Do Electronic Home Energy Reports Promote Energy Conservation? It Depends

Kathrin Kaestner ¹ Mark A. Andor ¹ Colin Vance ²

¹ RWI – Leibniz Institute for Economic Research

² RWI – Leibniz Institute for Economic Research and Jacobs University Bremen

IAEE Online Conference, June 9th, 2021

Motivation	Data	Methods	Results	Conclusions
•00	00000	00	00	0

Energy Conservation in the EU

- Clean generation and energy efficiency/savings as two strands to reduce carbon emissions in energy sector
- The EU Directive on Energy Efficiency sets target of final energy consumption reduction by 20% until 2030 compared to 2005 levels (EU 2018)
- National Energy and Climate Plans by all EU member states outline strategies to reach energy saving targets
 - Economic incentives
 - Non-price-based instruments, e.g. improved information and social comparisons → Home Energy Reports (HER)

Motivation	Data	Methods	Results	Conclusions
000	00000	00	00	0

Energy Conservation and HER

- Considerable electricity savings from HERs found in the US (Allcott 2011; Allcott and Rogers 2014):
 - Reductions in electricity consumption of 1.4-3.3%
 - Persistent effect for about 3 months
- Smaller effect sizes in Europe reduce cost effectiveness:
 - Average energy consumption reduction by 0.7% found in RCT for Germany (Andor et al. 2020) \rightarrow Electronic HERs

• Mixed evidence for electronic HERs from the US & Australia

- Electronic HERs at least as effective as postal HERs in reducing electricity (Henry et al. 2019)
- Boomerang effect for households that overestimate their consumption (Byrne et al. 2018)

(ロ ト 4 日 ト 4 日 ト 王) 日 つ Q (*
)
)
rts 2 / 13

Motivation	Data	Methods	Results	Conclusions
000	00000	00	00	O

Research Question

• Do electronic home energy reports in Austria lead to energy savings (such that the intervention is cost effective)?

Our Contribution

- Evaluate the effect of electronic HERs on electricity consumption in Austria, i.e. an European country
- Analyze effectiveness of electronic HERs for customers of eco-electricity provider

A ≥ ▶ < ≥ ▶ ≤ | ≥ </p>

Motivation	Data	Methods	Results	Conclusions
000	●0000	00	00	0

Data

- Consumer data from RCT with eco-electricity customers in Austria 2013-2016:
 - 21,088 households before cleansing
 - Four e-mails with social comparisons and energy saving tips (HER)
 - Mails sent on (roughly) quarterly basis between 2015 and 2016
 - 2 periods of interest: Baseline and treatment period
 - Annual consumption converted to daily levels due to different lengths of billing periods
 - 8,660 observations after cleansing

A ∃ ► A ∃ ► ∃ E

Motivation	Data	Methods	Results	Conclusions
000	0000	00	00	0

Timeline of Treatment

Figure: Timeline for optimal treatment

Kaestner, Andor, Vance (2021)

Image: A matrix

5/13

★ E ▶ ★ E ▶ E = 9 < 0<</p>

Motivation	Data	Methods	Results	Conclusions
000	0000	00	00	0

Balancing

	All	Control	Treatment	t-Statistic
Daily baseline consumption, in kWh	7.74	7.75	7.72	-0.39
Length of baseline period, in days	311.54	311.43	311.65	0.10
Length of treatment period, in days	501.37	503.10	499.62	-0.90
Dummy whether contract is terminated				
during study	0.16	0.17	0.16	-0.63
Number of households	8,660	4,343	4,317	

Motivation	Data	Methods	Results	Conclusions
000	00000	00	00	0

Comparison of Average Consumption in kWh between Study Population and Austria by Federal State

	Estimation Sample	Austria	Sample Share (in %)
Wien	2,074	3,261	50.21
Niederösterreich	3,358	4,698	21.22
Oberösterreich	1,336	4,555	9.63
Salzburg	1,961	5,262	0.58
Tirol	2,435	5,146	1.59
Burgenland	2,728	5,408	0.46
Steiermark	2,853	4,832	14.20
Kärnten	3,373	5,190	1.56
Austria	2,422	4,002	

Source for Austrian data: *Statistik Austria*. https://www.statistik.at/web_ de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_ umwelt/energie/energiebilanzen/index.html.

Motivation	Data	Methods	Results	Conclusions
000	00000	00	00	0

Number of HER

Figure: Number of mails received by treated households until end of study. More

Kaestner, Andor, Vance (2021)

э. 8/13

★ ∃ > 4

< 円

三日 のへで

Motivation	Data	Methods	Results	Conclusions
		•0		

Difference-in-differences (DiD) Estimation

$\Delta Y_i = \alpha + \beta * T_i + \tau_w + \epsilon_i$

- $\Delta Y_i = (Y_i^T Y_i^B) / Y_{i,c}^T$ corresponds to the change in daily electricity consumption of household *i* before (Y_i^B) and after the HER treatment (Y_i^T) , normalized by the average post-period control group consumption $(Y_{i,c}^T)$ (see Allcott 2011)
- *T_i* is the treatment variable
- β is the coefficient that captures the average treatment effect (ATE), expressed as average electricity savings as percentage of the average consumption level
- τ_w includes weekly dummies for both baseline and treatment period
- ϵ_i is an idiosyncratic error term

< ロ ト < 合 ト < 注 ト く 注 ト 三 ニ く へ (* orts 9 / 13

Motivation	Data	Methods	Results	Conclusions
000	00000	0•	00	0

Definition of Treatment Variable

- Three definitions of treatment variable *T_i* to look at treatment intensity:
 - 1 T_{min.1}: Treatment variable equal to 1 if household receives at least one mail in treatment period, 0 if in control group
 - **2** $T_{min.3}$: Treatment variable equal to 1 if household receives at least three mails in treatment period, 0 if in control group
 - 3 T_{all4}: Treatment variable equal to 1 if household receives all four mails in treatment period, 0 if in control group

Motivation	Data	Methods	Results	Conclusions
			•0	

ATE on Households' Electricity Consumption

	Min. 1 Mail		Min. 3 Mails		All 4 Mails	
	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.
T _{min.1}	0.162	0.141	-	-	-	-
	(0.342)	(0.336)	-	-	-	-
T _{min.3}	-		1.083***	0.142	-	-
	-	-	(0.408)	(0.456)	-	-
T _{all4}	-	-	` - <i>`</i>	· – ´	0.739	0.149
	-	-	-	-	(0.452)	(0.531)
Constant	-0.067	4.673	-0.067	0.299	-0.067	6.438
	(0.241)	(8.784)	(0.241)	(8.509)	(0.241)	(7.799)
Week Dummies	No	Yes	No	Yes	No	Yes
R^2	0.0000	0.0874	0.0010	0.0957	0.0004	0.0924
Observations	8,623	8,623	6,940	6,940	6,311	6,311

Notes: Robust standard errors are in parentheses. *** denotes significance at the 1%-level.

Motivation	Data	Methods	Results	Conclusions
000	00000	00	00	0

Heterogeneity - Deviation from the Mean Baseline

Consumption

	Min. 1 Mail		Min. 3 Mails		All 4 Mails	
	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.
Difference	-3.704*** (0.587)	-4.397*** (0.586)	-3.704*** (0.587)	-4.409*** (0.588)	3.704*** (0.587)	-4.399*** (0.590)
T _{min.1}	0.149 (0.340)	0.121 (0.333)				-
T _{min.3}	-	-	1.062***	0.135	-	-
T _{all4}	_	_	-	-	0.705	0.176
Difference × $T_{min.1}$	1.204	1.315 (0.872)	_	_	(0.458)	(0.558)
Difference × $T_{min.3}$	(0.880)	(0.873)	2.658**	2.682**	-	-
Difference × T_{all4}	_	_	(1.105)	(1.093)	2.097*	2.340*
Week Dummies	– No	– Yes	– No	– Yes	(1.245) No	(1.238) Yes
R ² Observations	0.0116 8.623	0.1030 8.623	0.0110 6.940	0.1094 6.940	0.0118 6.311	0.1074 6.311

Notes: Robust standard errors are in parentheses. *, ** and *** denotes significance at the 10%, 5% and 1%-level, respectively.

Robustness

Kaestner, Andor, Vance (2021)

< □ ▶ < 圖 ▶ < 필 ▶ < 필 ▶ < 필 ▶ のへの rts 12 / 13

Motivation	Data	Methods	Results	Conclusions
				•

Conclusions

- On average, households are not found to significantly change their electricity consumption
- Households with an above-average consumption tend to further increase consumption
- Electronic HERs seem to reinforce household behavior of high-consumption households
 - Eco-customers may have feeling of already doing more than enough
 - Overestimation of own consumption?
- Electronic HERs not a suited measure to induce electricity savings with eco-electricity customers in Austria

HER Example

Ihr Verbrauchsvergleich | Ihr Verbrauchsverhalten verglichen auf Basis Ihrer Postleitzahl

Die Bewe	rtung Ihres letzten Jahresverbrauchs:	befriedigend	© gut	🗇 🗇 sehr gut
4.830 kWh	Ihr Letzter Jahresverbrauch	00000		
2.739kWh 1.033kWh	Die effizientesten 20%	enen Hausnalle		

Figure: Social Comparison Element in HER.

Heterogeneity - Below Average Zip Code Baseline

Consumption

	Min. 1 Mail		Min. 3 Mails		All 4 Mails	
	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.	Coeff./s.e.
Below	4.023***	4.279***	4.023***	4.292***	4.023***	4.281***
	(0.509)	(0.499)	(0.509)	(0.501)	(0.509)	(0.501)
T _{min.1}	0.664	0.651	-	-	-	-
	(0.640)	(0.622)	-	-	-	-
T _{min.3}	-	-	2.028***	1.148	-	-
	-	-	(0.783)	(0.796)	-	_
T _{all4}	-	-			1.550*	1.037
	-	-	-	-	(0.870)	(0.904)
Below $\times T_{min,1}$	-0.962	-0.983	-	-		
	(0.731)	(0.715)	-	-	-	-
Below $\times T_{min,3}$	-		-1.771**	-1.777**	-	_
	-	-	(0.887)	(0.870)	-	-
Below $\times T_{all4}$	-	-	-	-	-1.548	-1.549
	-	-	-	-	(0.985)	(0.969)
Constant	-2.346***	-0.821	-2.346***	-0.685	-2.346***	0.249
	(0.443)	(7.542)	(0.443)	(7.392)	(0.443)	(6.781)
Week Dummies	No	Yes	No	Yes	No	Yes
R^2	0.0125	0.1012	0.0122	0.1080	0.0126	0.1056
Observations	8,623	8,623	6,940	6,940	6,311	6,311

Notes: Robust standard errors are in parentheses. *, ** and *** denotes significance at the 10%, 5% and 1%-level, respectively.

Heterogeneitv

Kaestner, Andor, Vance (2021)

Home Energy Reports

2/4

ヘロア 山田 ヘ州マ ヘルマ クタク

References I

- Allcott, Hunt (2011). "Social norms and energy conservation". In: Journal of Public Economics 95.9-10, pp. 1082–1095.
- Allcott, Hunt and Todd Rogers (2014). "The short-run and long-run effects of behavioral interventions: Experimental evidence from energy conservation". In: *American Economic Review* 104.10, pp. 3003–37.
- Andor, Mark A., Andreas Gerster, Jörg Peters, and Christoph M. Schmidt (2020). "Social norms and energy conservation beyond the US". In: *Journal of Environmental Economics and Management* 103, p. 102351.
- Byrne, David P., Andrea La Nauze, and Leslie A. Martin (2018). "Tell me something I don't already know: Informedness and the impact of information programs". In: *Review of Economics and Statistics* 100.3, pp. 510–527.

References II

 EU (2018). Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32018L2002&from=EN.
Henry, Marisa L., Paul J. Ferraro, and Andreas Kontoleon (2019). "The behavioural effect of electronic home energy reports: Evidence from a randomised field trial in the United States". In: Energy Policy 132, pp. 1256–1261.