1st IAEE Online Conference 7-9 June 2021

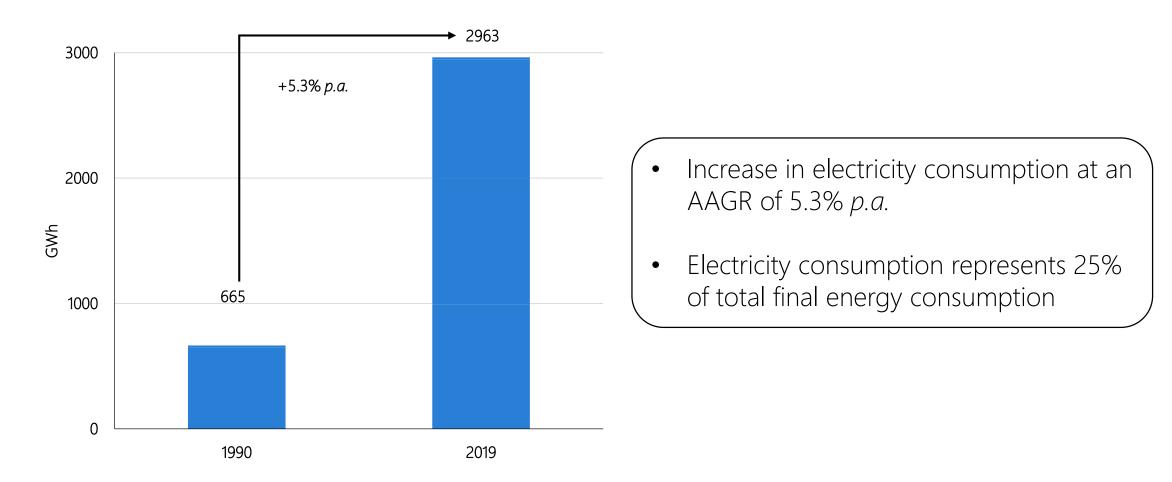
Concurrent Session 100: Modeling Demand Response

Electricity demand elasticity in Mauritius: an ARDL bounds test approach to cointegration

C E M O I

Anna Genave

University of La Réunion


9 June 2021

Aggregate electricity consumption

Figure 1 : Electricity demand (GWh) between 1990 and 2019

Electricity consumption by sector

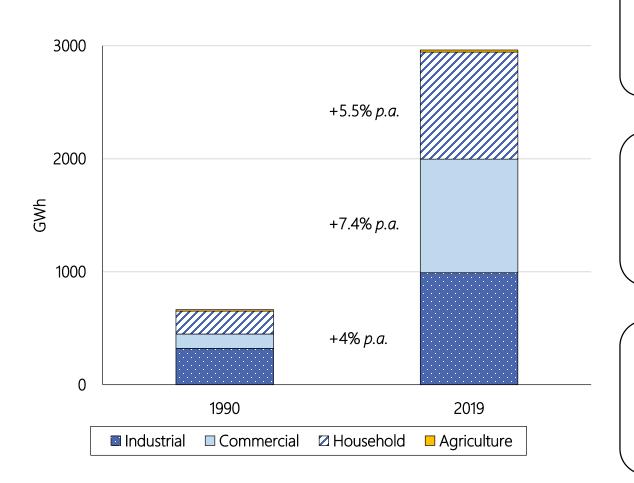


Figure 2 : Electricity demand (GWh) between 1990 and 2019

- Increase in household electricity demand mainly due to higher income and living standards
- Increase in commercial electricity demand which is a service-oriented sector where electricity is the primary energy source.
- Slower growth rate in the industrial sector mainly due higher added-value production and adoption of more efficient processes

Research question

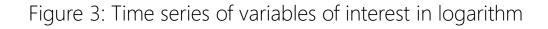
What are the main drivers of electricity consumption in Mauritius?

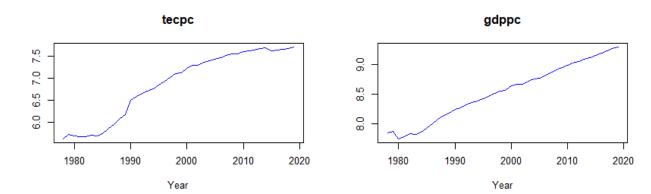
- What is the nature and magnitude of the relationship between electricity consumption and its drivers?
 - Is there a long-run equilibrium path for electricity consumption?
 - What are the policy implications?

2 Literature review

Selected studies estimating electricity consumption including at least one island

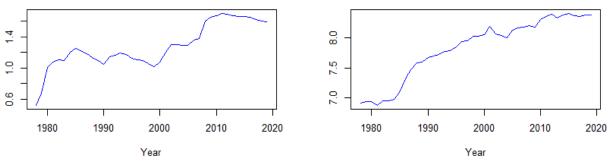
Type of studies	Authors	Countries	Variables	Methods	Main findings	
	Sultan (2012)	Mauritius	GDP per cap Investment per cap Electricity consumption per cap Exports per cap	ARDL bounds test approach to cointegration + Johansen- Juselius test	Multiple causal relationships	
Single-country	Narayan and Singh (2007)	Fiji	GDP Energy use Labour force	ARDL bounds test approach to cointegration	Unidirectional causality from electricity consumption to GDP	
	Katircioglu (2013)	Singapore	Energy consumption Imports Cointegration tes		Unidirectional causality from energy to imports	
	Mishra et al. (2009)	9 Pacific Islands	Energy consumption per cap GDP per cap Urbanization	Panel Cointegration test + Granger causality test	Bidirectional causality between energy consumption and GDP	
	Shabaz et al. (2014)	91 countries including 4 islands	Trade openness Electricity consumption	Panel Cointegration test + multiple causality tests	Bidirectional causality between trade and energy consumption	
Multi-country	Antonakakis et al. (2017)	106 countries including 7 islands	GDP per capita CO ₂ emissions per cap Final energy consumption including electricity	Panel Granger causality test	Multiple Granger causal links for different income-based groups	
	Wang et al. (2018)	170 countries including 30 islands	Urbanization CO ₂ emissions GDP per cap Energy consumption per cap	Pedroni cointegration test for panel data + Panel Granger causality test	Multiple Granger causal links for different income-based groups	

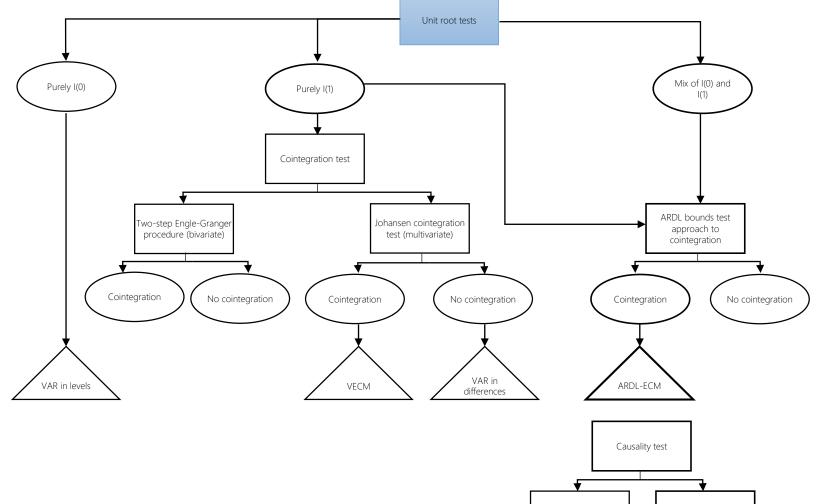


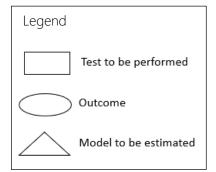

Data

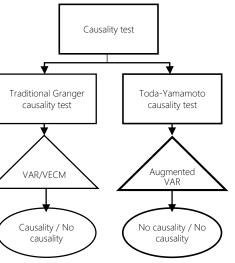
Annual data for the period 1978-2019

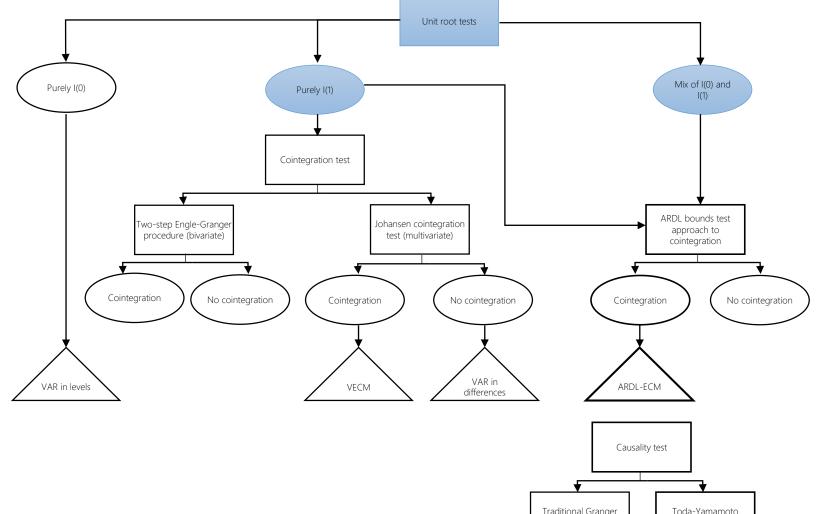
Dependent variable

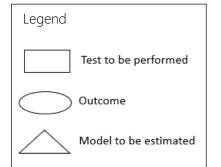

- Electricity consumption per capita (tecpc)
- Explanatory variables
 - Real GDP per capita (gdppc)
 - Average price of electricity (**ep**)
 - Exports per capita (exppc)

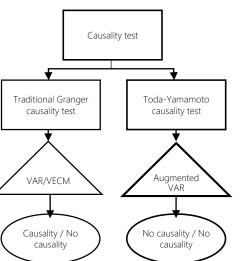


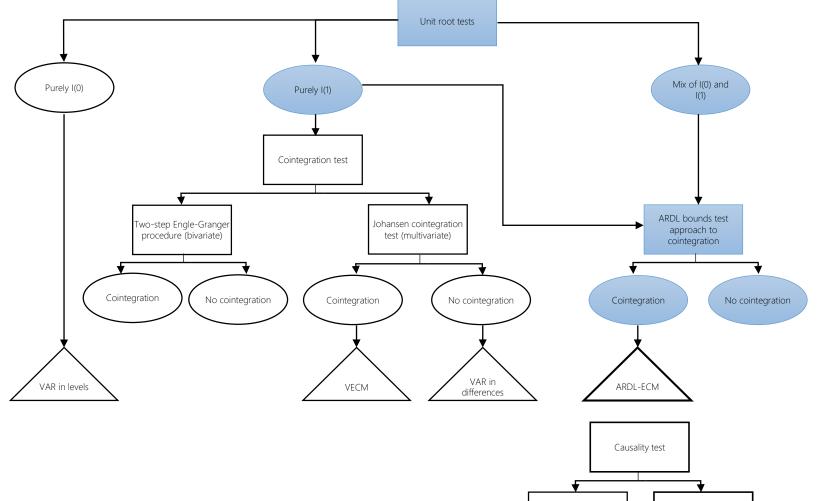

ер

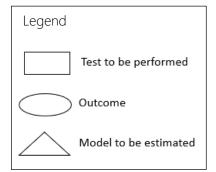


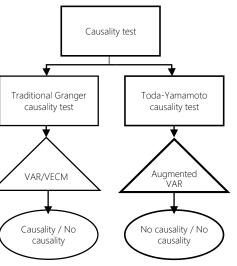


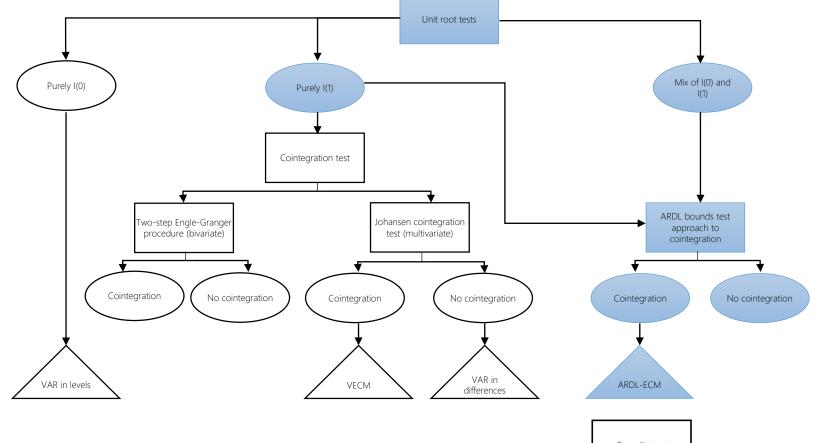

Series potentially affected by a trend and cointegrated

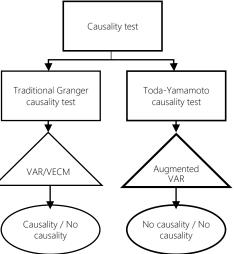


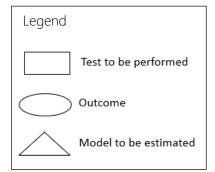


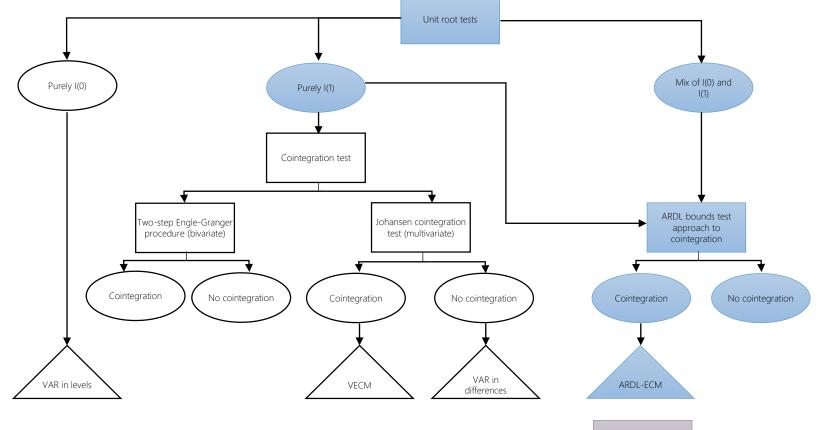


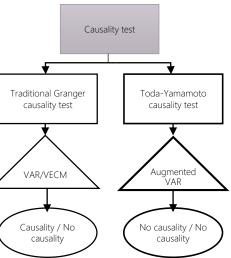


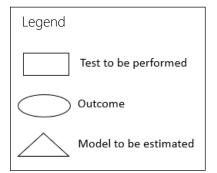


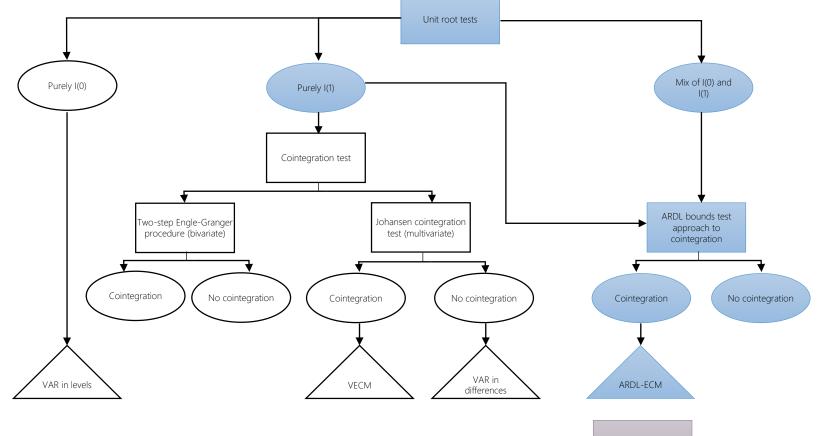


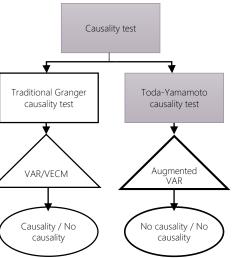


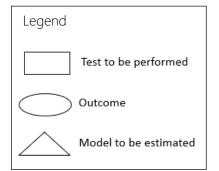


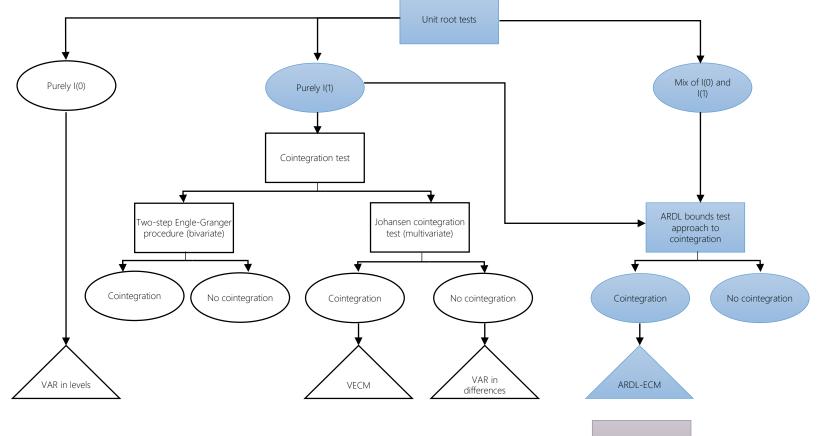


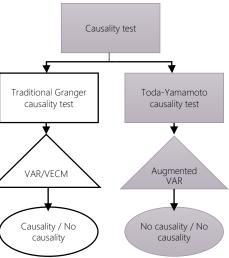


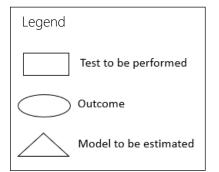












Empirical setting: ARDL-ECM

$$\Delta tecpc_{t} = \sum_{i=1}^{q-1} \varphi_{i} \Delta tecpc_{t-i} + \sum_{j=1}^{p^{1-1}} \beta_{j} \Delta gdppc_{t-j} + \sum_{j=1}^{p^{2-1}} \gamma_{j} \Delta ep_{t-j} + \sum_{j=1}^{p^{3-1}} \lambda_{j} \Delta exppc_{t-j} + \frac{\psi_{tecpc} ECT_{t-1} + \varepsilon_{t}}{\varphi_{t-1} - (1)}$$
(1)

$$ECT_{t-1} = tecpc_{t-1} - (\frac{\alpha_{0}}{1 - \sum_{i=1}^{p} \varphi_{i}}) - (\frac{\sum_{j=0}^{q^{1}} \beta_{j}}{1 - \sum_{i=1}^{p} \varphi_{i}})gdppc_{t-1} - (\frac{\sum_{j=0}^{q^{2}} \gamma_{j}}{1 - \sum_{i=1}^{p} \varphi_{i}})ep_{t-1} - (\frac{\sum_{j=0}^{q^{3}} \lambda_{j}}{1 - \sum_{i=1}^{p} \varphi_{i}})expc_{t-1}$$
(2)
Deviation of $tecpc_{t-1}$ from its
long-run equilibrium

Toda-Yamamoto causality test

$$\begin{bmatrix} tecpc_t\\gdppc_t\\ep_t\\exppc_t \end{bmatrix} = \begin{bmatrix} \eta_0\\\theta_0\\\omega_0\\\pi_0 \end{bmatrix} + \sum_{i=0}^{k} \begin{bmatrix} \eta_{1i} \ \eta_{2i} \ \eta_{3i} \ \eta_{4i}\\\theta_{1i} \ \theta_{2i} \ \theta_{3i} \ \theta_{4i}\\\omega_{1i} \ \omega_{2i} \ \omega_{3i} \ \omega_{4i}\\\pi_{1i} \ \pi_{2i} \ \pi_{3i} \ \pi_{4i} \end{bmatrix} \begin{bmatrix} tecpc_{t-i}\\gdppc_{t-i}\\ep_{t-i}\\exppc_{t-i} \end{bmatrix} + \sum_{j=1}^{d_{max}} \begin{bmatrix} \kappa_{1j} \ \kappa_{2j} \ \kappa_{3j} \ \kappa_{4j}\\\zeta_{1j} \ \zeta_{2j} \ \zeta_{3j} \ \zeta_{4j}\\\tau_{1j} \ \tau_{2j} \ \tau_{3j} \ \tau_{4j}\\\theta_{1j} \ \phi_{2j} \ \phi_{3j} \ \phi_{4j} \end{bmatrix} \begin{bmatrix} tecpc_{t-j}\\gdppc_{t-j}\\exppc_{t-j} \end{bmatrix} + \begin{bmatrix} \epsilon_{1t}\\\epsilon_{2t}\\\epsilon_{3t}\\\epsilon_{4t} \end{bmatrix}$$

If $\sum_{i=0}^{k} \eta_{2i} = 0$, then $gdppc_t$ does not Granger-cause $tecpc_t$

Inversely, if $\sum_{i=0}^{k} \theta_{1i} = 0$, then $tecpc_t$ does not Granger-cause $gdppc_t$

(3)

4 Results and discussion

Non-stationary series integrated of order 1

Table 1: Results of unit root tests

Variables	ADF			PP)	KPSS	
variables	T&C	С	Ν	T&C	С	T&C	С
Levels							
tecpc	-0.644	-2.770	-	-0.146	-1.579	0.445***	2.079***
gdppc	-3.132	-	-	-3.517	0.439	0.107	2.159***
ер	-1.999	-1.044	0.721	-3.04	-2.704	0.137	1.201***
exppc	-2.520	-3.309**	-	-0.918	-1.680	0.432***	1.991***
First diff							
tecpc	-4.235***	-	-	-4.320**	-	0.176**	0.460
gdppc	-4.939***	-	-	-5.439***	-	0.124	0.141
ер	-3.419	-3.417	-3.407***	-3.980**	-	0.141	0.229
exppc	-4.428	-	-	-5.342***	-	0.066	0.302
CV							
5%	-3.50	-2.93	-1.95	-3.586	-2.974	0.146	0.463
1%	-4.15	-3.58	-2.62	-4.338	-3.695	0.216	0.739

Unit root tests

 ADF (Dickey and Fuller, 1979; 1981) PP (Phillips and Perron, 1988) KPSS (Kwiatkowski et al., 1992) 	Stationarity and order of integration

Non-stationary in levels

*** , * denote statistical significance level at 1% and 5%

T&C: Trend and constant; C: Constant only; N: None (no trend and no constant); CV: Critical values

Non-stationary series integrated of order 1

Table 1: Results of unit root tests

						1	
Variables		ADF		PF)	KP	SS
variables	T&C	С	Ν	T&C	С	T&C	С
Levels							
tecpc	-0.644	-2.770	-	-0.146	-1.579	0.445***	2.079***
gdppc	-3.132	-	-	-3.517	0.439	0.107	2.159***
ер	-1.999	-1.044	0.721	-3.04	-2.704	0.137	1.201***
exppc	-2.520	-3.309**	-	-0.918	-1.680	0.432***	1.991***
First diff							
tecpc	-4.235***	-	-	-4.320**	-	0.176**	0.460
gdppc	-4.939***	-	-	-5.439***	-	0.124	0.141
ер	-3.419	-3.417	-3.407***	-3.980**	-	0.141	0.229
exppc	-4.428	-	-	-5.342***	-	0.066	0.302
CV							
5%	-3.50	-2.93	-1.95	-3.586	-2.974	0.146	0.463
1%	-4.15	-3.58	-2.62	-4.338	-3.695	0.216	0.739

Unit root tests

• ADF (Dickey and Fuller, 1979; 1981)

 *** , * denote statistical significance level at 1% and 5%

T&C: Trend and constant; C: Constant only; N: None (no trend and no constant); CV: Critical values

Stationarity and

Non-stationary series integrated of order 1 and cointegrated

Table 2: Results of the ARDL bounds test approach to cointegration

			CV at 5%		CV at 1%	
Function	ARDL model	F-stat	I (0)	I (1)	I (0)	I (1)
F _{tecpc} (tecpc gdppc, ep, exppc)	(1,0,0,0)	12.038***	3.5385	4.8204	5.0448	6.6253
F _{gdppc} (gdppc tecpc, ep, exppc)	(3,1,0,0)	3.145	3.5974	4.8532	5.0547	6.6570
F _{ep} (ep tecpc, gdppc, exppc)	(1,0,1,0)	2.3874	3.5385	4.8204	5.0448	6.6253
F _{exppc} (exppc teppc, gdppc, ep)	(1,0,1,0)	1.3554	3.5385	4.8204	5.0448	6.6253

*** denotes statistical significance level at 1%

- Existence of a unique cointegrating relationship
- Explanatory variables are weakly exogenous
- Validation of the 'conditional' model

Cointegration test
• Pesaran and Shin (1995) and Pesaran et al. (2001)

$$\begin{aligned}
\Delta tecpc_t \\
&= \alpha_0 + \sum_{i=1}^{p-1} \varphi_i \Delta tecpc_{t-i} + \sum_{j=1}^{q_{1-1}} \beta_j \Delta gdppc_{t-j} + \sum_{j=1}^{q_{2-1}} \gamma_j \Delta ep_{t-j} \\
&+ \sum_{j=1}^{q_{3-1}} \lambda_j \Delta exp_{t-j} + \delta_1 tecpc_{t-1} + \delta_2 gdppc_{t-1} + \delta_3 ep_{t-1} + \delta_4 exppc_{t-1} + \varepsilon_t \\
&\qquad (4)
\end{aligned}$$

$$\begin{cases}
H_0 : \delta_1 = \delta_2 = \delta_3 = \delta_4 = 0 \quad \rightarrow \text{ No cointegration} \\
H_1 : \delta_1 \neq \delta_2 \neq \delta_3 \neq \delta_4 \neq 0 \quad \rightarrow \quad \text{ Cointegration} \\
\end{bmatrix}$$

Estimating the ARDL-ECM model

Table 3: Short-run estimates

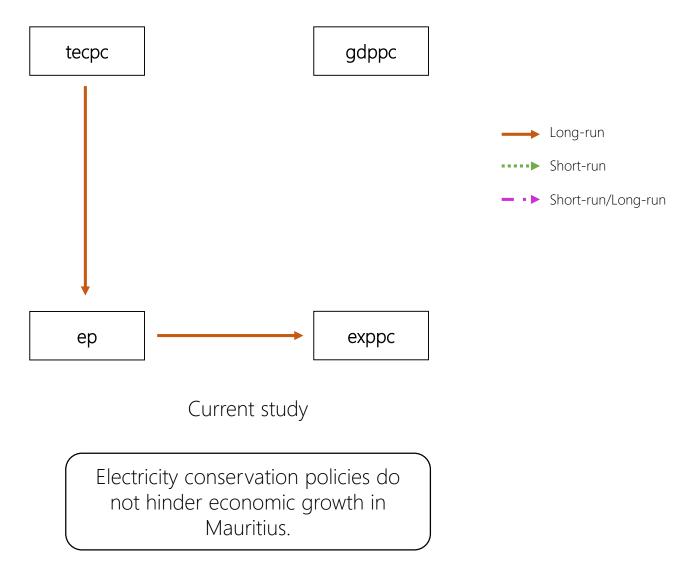
Conditional Error Correction Regression						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
c ECT (-1) gdppc ep exppc	-1.151637 -0.210640 0.072662 -0.138045 0.280250	0.358753 0.045512 0.088737 0.051682 0.060655	-3.210115 -4.628238 0.818852 -2.671043 4.620365	0.0028 0.0000 0.4183 0.0113 0.0000		
Levels Equation Case 3: Unrestricted Constant and No Trend						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
gdppc ep exppc	0.344958 -0.655357 1.330465	0.272261 0.209440 0.234199	1.267013 -3.129098 5.680910	0.2133 0.0035 0.0000		

ECT = tecpc - (0.3450*gdppc - 0.6554*ep + 1.3305*exppc)

- tecpc explained by its average price and exports
- Inelastic nature of tecpc to changes in price and exports
- Negative and highly significant adjustment parameter
- Deviations from the equilibrium path corrected up to 21%.

Estimating the ARDL-ECM model

Table 3: Long-run estimates


Conditional Error Correction Regression							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
c ECT (-1) gdppc ep exppc	-1.151637 -0.210640 0.072662 -0.138045 0.280250	0.358753 0.045512 0.088737 0.051682 0.060655	-3.210115 -4.628238 0.818852 -2.671043 4.620365	0.0028 0.0000 0.4183 0.0113 0.0000			
	Levels Equation Case 3: Unrestricted Constant and No Trend						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
gdppc ep exppc	0.344958 -0.655357 1.330465	0.272261 0.209440 0.234199	1.267013 -3.129098 5.680910	0.2133 0.0035 0.0000			

ECT = tecpc - (0.3450*gdppc - 0.6554*ep + 1.3305*exppc)

- gdppc still not significant
- Long-term drivers: electricity prices and exports per cap
- Inelastic nature of the electricity price effect: crosssubsidization
- tecpc becomes elastic to changes in exppc: increased output resulting in increased demand → structural transition of the economy

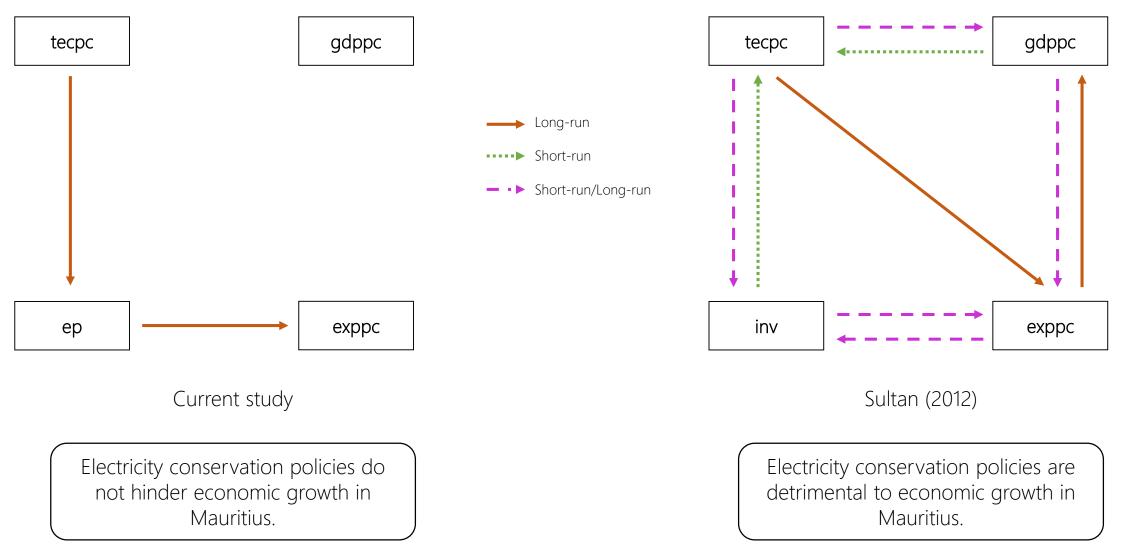

Toda-Yamamoto causality results

Figure 5: Direction of causality

Toda-Yamamoto causality results

Figure 5: Direction of causality

5 Concluding remarks

Main findings

- 1. Existence of a unique and stable cointegrating relationship.
- 2. Error-correcting mechanism \rightarrow convergence towards long-run equilibrium path
- Price inelasticity both in the SR and LR → prices are cross-subsidized and not cost-reflective
- 4. Absence of causality running from explanatory variables \rightarrow implementation of energy-saving policies

Limitations and way forward

Limitations:

- Few observations \rightarrow issues with data availability
- Results might be more nuanced when one considers sectoral electricity consumption

Future research outlets:

- Sectoral analysis of electricity consumption
- Long-term electricity demand projections → Demand scenarios for the prospective modeling of the power system of Mauritius

1st IAEE Online Conference 7-9 June 2021

Thank you!

Anna Genave University of La Réunion

C E M O Université de La Réuni

anna.genave@univ-reunion.fr

References

Antonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renewable and Sustainable Energy Reviews, 68, 808-824.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.

Dickey, D. A. and Fuller, W. A. (1981), Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, Econometrica, 49, 1057–1072.

Katircioglu, S. T. (2013). Interactions between energy and imports in Singapore: empirical evidence from conditional error correction models. Energy Policy, 63, 514-520.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of econometrics, 54(1-3), 159-178.

Mishra, V., Smyth, R., & Sharma, S. (2009). The energy-GDP nexus: evidence from a panel of Pacific Island countries. Resource and Energy Economics, 31(3), 210-220.

Narayan, P. K., & Singh, B. (2007). The electricity consumption and GDP nexus for the Fiji Islands. Energy Economics, 29(6), 1141-1150.

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326.

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.

Shahbaz, M., Nasreen, S., Ling, C. H., & Sbia, R. (2014). Causality between trade openness and energy consumption: What causes what in high, middle- and low-income countries. Energy Policy, 70, 126-143.

Sultan, R. (2012). An econometric study of economic growth, energy and exports in Mauritius: Implications for trade and climate policy. International Journal of Energy Economics and Policy, 2(4), 225.

Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of econometrics, 66(1-2), 225-250.

Wang, S., Li, G., & Fang, C. (2018). Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renewable and Sustainable Energy Reviews, 81, 2144-2159.

Preliminary tests

Unit root tests

- ADF (Dickey and Fuller, 1979; 1981)
- PP (Phillips and Perron, 1988)
- KPSS (Kwiatkowski et al., 1992)

Cointegration test

• Pesaran and Shin (1995) and Pesaran et al. (2001)

$$\Delta tecpc_{t} = \alpha_{0} + \sum_{i=1}^{p-1} \varphi_{i} \Delta tecpc_{t-i} + \sum_{j=1}^{q_{1}-1} \beta_{j} \Delta gdppc_{t-j} + \sum_{j=1}^{q_{2}-1} \gamma_{j} \Delta ep_{t-j} + \sum_{j=1}^{q_{3}-1} \lambda_{j} \Delta exppc_{t-j} + \frac{\delta_{1} tecpc_{t-1}}{\delta_{2} gdppc_{t-1}} + \frac{\delta_{2} gdppc_{t-1}}{\delta_{3} ep_{t-1}} + \frac{\delta_{4} exppc_{t-1}}{\delta_{4} exppc_{t-1}} + \varepsilon_{t}$$

$$(1)$$

 $\begin{cases} H_0: \delta_1 = \delta_2 = \delta_3 = \delta_4 = 0 & \rightarrow No \ cointegration \\ H_1: \delta_1 \neq \delta_2 \neq \delta_3 \neq \delta_4 \neq 0 & \rightarrow & Cointegration \end{cases}$

Stationarity and order of integration

Preliminary tests

Unit root tests

- ADF (Dickey and Fuller, 1979; 1981)
- PP (Phillips and Perron, 1988)
- KPSS (Kwiatkowski et al., 1992)

Cointegration test

• Pesaran and Shin (1995) and Pesaran et al. (2001)

$$\Delta tecpc_{t} = \alpha_{0} + \sum_{i=1}^{p-1} \varphi_{i} \Delta tecpc_{t-i} + \sum_{j=1}^{q_{1}-1} \beta_{j} \Delta gdppc_{t-j} + \sum_{j=1}^{q_{2}-1} \gamma_{j} \Delta ep_{t-j} + \sum_{j=1}^{q_{3}-1} \lambda_{j} \Delta exppc_{t-j} + \delta_{1} tecpc_{t-1} + \delta_{2} gdppc_{t-1} + \delta_{3} ep_{t-1} + \delta_{4} exppc_{t-1} + \varepsilon_{t}$$

$$\begin{pmatrix} H_{0} : \delta_{1} = \delta_{2} = \delta_{3} = \delta_{4} = 0 & \rightarrow No \ cointegration \\ H_{1} : \delta_{1} \neq \delta_{2} \neq & \delta_{3} \neq \delta_{4} \neq 0 & \rightarrow \\ \end{pmatrix} \xrightarrow{(1)} Cointegration$$

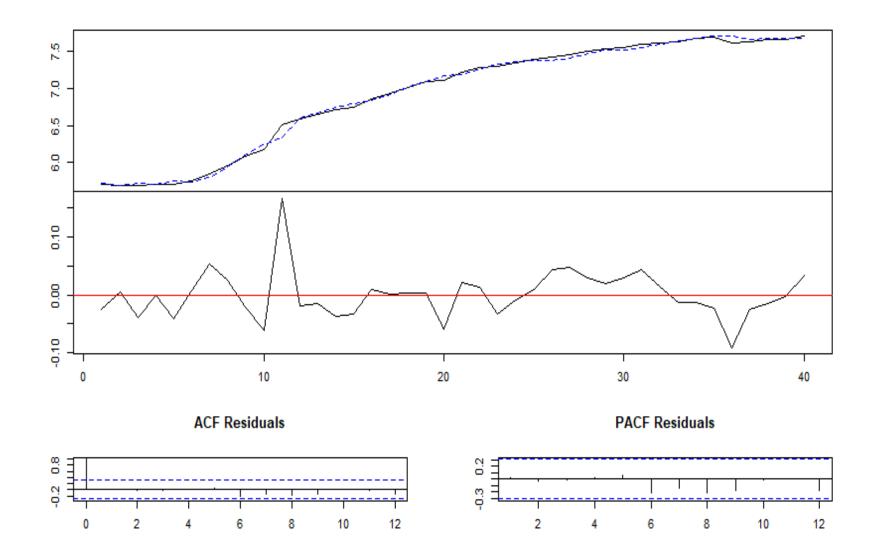
$$(1)$$

ARDL-ECM (Conditional and marginal ECM)

Conditional model

$$\Delta tecpc_t = \sum_{i=1}^{q-1} \varphi_i \Delta tecpc_{t-i} + \sum_{j=1}^{p_{1-1}} \beta_j \Delta gdppc_{t-j} + \sum_{j=1}^{p_{2-1}} \gamma_j \Delta ep_{t-j} + \sum_{j=1}^{p_{3-1}} \lambda_j \Delta exppc_{t-j} + \psi_{tecpc} ECT_{t-1} + \varepsilon_{1t}$$

$$\Delta gdppc_{t} = \sum_{i=1}^{q-1} \beta_{i} \Delta gdppc_{t-i} + \sum_{j=1}^{p_{1}-1} \varphi_{j} \Delta tecpc_{t-j} + \sum_{j=1}^{p_{2}-1} \gamma_{j} \Delta ep_{t-j} + \sum_{j=1}^{p_{3}-1} \lambda_{j} \Delta exppc_{t-j} + \psi_{gdppc} ECT_{t-1} + \varepsilon_{2t}$$

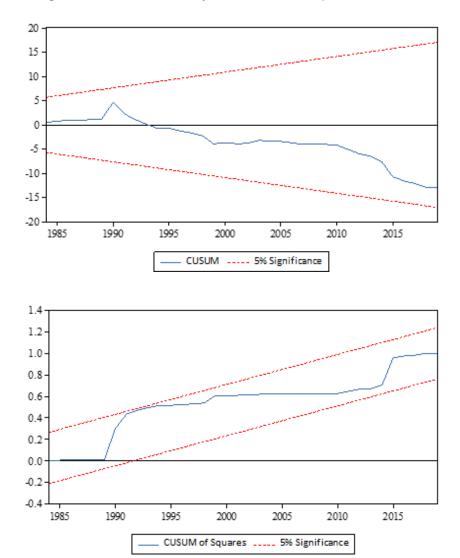

Marginal models

$$\Delta ep_t = \sum_{i=1}^{q-1} \varphi_i \Delta ep_{t-i} + \sum_{j=1}^{p_{1-1}} \varphi_j \Delta tecpc_{t-j} + \sum_{j=1}^{p_{2-1}} \beta_j \Delta gdppc_{t-j} + \sum_{j=1}^{p_{3-1}} \lambda_j \Delta exppc_{t-j} + \psi_{ep} ECT_{t-1} + \varepsilon_{3t}$$

$$\Delta exppc_{t} = \sum_{i=1}^{q-1} \lambda_{i} \Delta exppc_{t-i} + \sum_{j=1}^{p_{1-1}} \varphi_{j} \Delta tecpc_{t-j} + \sum_{j=1}^{p_{2-1}} \beta_{j} \Delta gdppc_{t-j} + \sum_{j=1}^{p_{3-1}} \gamma_{j} \Delta ep_{t-j} + \psi_{exppc} ECT_{t-1} + \varepsilon_{4t}$$

Model fit for conditional model

Diagram of fit and residuals for tecpc



Model validation

Table 4: Residual and parameter tests

Diagnostic tests	
Specification (Ramsey RESET test)	3.193 [0.054]
Unit root test (ADF test)	-4.450 $[7.6e - 05]^{***}$
Serial correlation (Breusch-Godfrey LM test)	0.008 [0.929]
Heteroscedasticity (Breusch-Pagan)	4.739 [0.315]
Normality (Shapiro Wilk test)	$0.816 \ [1.203e - 05]^{***}$
Stability (Recursive CUSUM test)	0.732 [0.208]

Figure: Overall stability of the model parameters

