Back-up

"BEYOND COST REDUCTION: A NEW METHOD TO IMPROVE THE VALUE OF TECHNOLOGIES IN ENERGY SYSTEMS"

Maximilian Parzen

max.parzen@ed.ac.uk

Institute of Energy Systems University of Edinburgh, UK

Based on:

M. Parzen, F. Neumann, A.H. Van der Weijde, D. Friedrich, A. Kiprakis, Beyond cost reduction: Improving the Value of Energy Storage in the Electricity System (2021), URL: <u>https://arxiv.org/abs/2101.10092</u>

IAEE Conference

19.03.2021

Motivation

Back-up

COSTS AND WORK RELATION

Generally speaking: Something **COSTS** because someone needs to **WORK** for it

AIROILPV0littlehighcostscostscosts

WHAT IS LIFE?

LIFE IS A MULTI-OBJECTIVE FUNCTION

Min(Total costs)

Future generations should work less/ have more time

Max(health)

Future generations should live longer and healthier Future generations should be more happy

Max(happiness)

Max(nature)

Future generations have a planet worth to life on

Motivation

Market-Potential-Method

Discussion

sion

Back-up

VALUE DEFINITION – DO YOU AGREE?

AN ENERGY TECHNOLOGY IS VALUABLE IF IT LOWERS TOTAL SYSTEM COSTS

Market-Potential-Method

Discussion

Back-up

TECHNOLOGY ASSESSMENT – WHY?

We need to assess which technology is valuable!

Gives answers on:

What technology to invest?

- Research
- Manufacturing capabilities 'Gigafactory'
- Subsidy/support

Users:

...

- Manufacturer (Siemens Energy, GE, ...)
- Regulators (ACER in EU, FERC in US, ...)
- System operators (TSO in EU, ...)
- Policy makers (Governments, Consultants, ...)

on

Back-up

TECHNOLOGY ASSESSMENT – WHAT METHODS?

How we are assessing energy technology at the moment?

NONE method worked properly to suggest technology that reduces the total system cost

Back-up

METRICS WERE USED TO JUDGE ABOUT COMPETITIVENESS

"...[LCOS study] insights increase transparency around the future competitiveness of electricity storage technologies and can help guide research, policy, and investment activities to ensure cost-efficient deployment"

Schmidt et al. **(2019)**, Projecting the Future Levelized Cost of Electricity Storage Technologies, **Joule**

More sophisticated LCOS study ... "We find that lithiumion batteries are likely to **outcompete** alternative ESTs by 2030 across applications and largely independent of selected scenarios"

Beuse et al. **(2020)**, Projecting the Competition between Energy-Storage Technologies in the Electricity Sector, **Joule**

ENERGY STORAGE CASE STUDY

ACCOUNTING VALUES FROM: ENERGY ARBITRAGE AND SEASONAL RESERVE PROVISION

 Motivation
 Case Study: Energy Storage
 Market-Potential-Method
 Discussion
 Conclusion
 Back-up

How does an energy system modelling work?

Find the long-term cost-optimal energy system, including investments and short-term costs:

$$\operatorname{Minimise} \begin{pmatrix} \mathsf{Yearly} \\ \mathsf{system \ costs} \end{pmatrix} = \sum_{n} \begin{pmatrix} \mathsf{Annualised} \\ \mathsf{capital \ costs} \end{pmatrix} + \sum_{n,t} \begin{pmatrix} \mathsf{Marginal} \\ \mathsf{costs} \end{pmatrix}$$

subject to constraints... adding PHYSICS

- meeting energy demand at each node n (e.g. region) and time t (e.g. hour of year)
- **transmission constraints** between nodes and (linearised) power flow
- wind, solar, hydro (variable renewables) availability time series $\forall n, t$
- (installed capacity) ≤ (geographical potentials for renewables)
- **CO**₂ **constraint** (e.g. 30 Mt/a CO₂-Cap)
- **Dispatchability** from gas plants, battery storage, hydrogen storage, HVDC links

Source: <u>"Tom Brown"</u> licensed under <u>CC BY 4.0</u>

Physics are one thing. Realistic data another thing.

PyPSA-Eur is a workflow to build a model from open data.

Cover the ENSTSOE-E area and contains:

- All AC lines at and above 2020 kV, substations and HVDC links
- Database of conventional power plants
- Time series for electrical demand
- Time series for renewable generator availability
- Geographic **potentials** for wind and solar expansion

THE UNIVERSITY of EDINBURGH

"European Map" by "Maximilian Parzen" is licensed under CC BY-NC-ND 4.0

Storage Inputs:

Power related components:

Table 1: Power related energy storage model inputs representing	<u>g 2030 data</u>
---	--------------------

Energy storage components	Electrolysor		Fuel cell		Battery Inverter	
LCOS Scenario	[Low]	[High]	[Low]	[High]	[-]	
Investment $[EUR/kW_{el}]$	339	677	339	423 ^a	209^{c}	
FOM ^a [%/year]	2	3	2	3	3	
Lifetime [<i>a</i>]	25	15	20	20	10	
Efficiency [%]	68	79	47	58	90	
Discount Rate [%]	7	7	7	7	7	
Resad on Paf	[12]	[12]	[70]	[70, 71]	[71, 72]	
	Alkaline	$SOEC^d$	PEM ^e	SOFC ^f	Li-Ion Battery ^g	

^{*a*} Fixed operation and maintenance cost

^b Includes fuel cell stack replacement after 10 years which cost 30% of initial cost

^{*c*} Includes 80 *EUR/kW* balance of plant, mainly assigned to wiring and connection [72] ^{*d*} Solid-Oxide Electrolyser

^e Proton Exchange Membrane or Polymer Electrolyte Membrane

^f Solid-Oxide Fuel Cell

^g Lithium-Ion Battery

<u>"Storage Inputs 1</u>" by <u>"Maximilian Parzen"</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Energy related components:

Table 2: Energy related energy storage model inputs representing 2030 data						
Energy storage components	H_2 storage		Battery storage			
LCOS Scenario	[High]	[Low]	[-]			
Investment [EUR/kWh _{el}]	8.4	8.4	188^{b}			
FOM ^a [%/year]	-	-	-			
Lifetime [<i>a</i>]	20	20	10			
Efficiency [%]	-	-	-			
Basad on Paf	[71]	[71]	[72]			
	H_2 steel tanks		Li-Ion Battery			

^{*a*} Fixed operation and maintenance cost

^b Includes 81 *EUR/kW* for engineering, procurement and construction costs [72]

<u>"Storage Inputs 2</u>" by <u>"Maximilian Parzen"</u> is licensed under <u>CC BY-NC-ND 4.0</u>

- Talking about one single LCOS is misleading -> wide range of LCOS exist
- Assuming constant Full load hours (FLH) is dangerous as well.
- Market potential exist for both, high and low LCOS cost version Why we assess the LCOS?

NEW MARKET POTENTIAL METHOD – TO GUIDE INNOVATION

<u>"Market Potential Method" by "Maximilian Parzen" is licensed under CC BY-NC-ND 4.0</u>

Market-Potential-Method

Discussion

lusion

Back-up

MARKET POTENTIAL CRITERIA

General rules:

- MPI = 0, tech. is unlikely to be valuable
- MPI > 0, tech. is likely to be valuable
- MPI > 0 in multiple scenarios reduces uncertainty

Additional 'subjective' rules:

- MPI > X or 'threshold rule'
- MPI_A > MPI_B or 'bigger is better' rule

"Qualitative Market Potential Criteria" by "Maximilian Parzen" is licensed under CC BY-NC-ND 4.0

Discussion

Back-up

Market Potential Method = Systematic Deployment Assessment

Some results:

- SOFC fuel cell and Li-Ion batteries are 'safe bets'
- Alkaline electrolyser seems to prefer to work with SOFC fuel cell
- Results suggest that high cost technology can be equally or more valuable
 - -> LCOS is incomplete

Modelling and improvements

YES. Modelling can always improve:

- Including other 'values' by additional system services (i.e. new constraints)
- Including more sectors (<u>i.e. PyPSA-Eur-Sec</u>)
- Adding more technologies/components
- Improving data situation (i.e. load distribution, existing VRE)
- Expanding to new regions (i.e. Africa VS. Europe)
- Adding non-linear effects
- Improving energy market representation (i.e. Game-theory elements)

BUT at least it can improve ...

. . .

Conclusion

KEY MESSAGE

In regard to energy technology:

"LOWER COST IS NOT EQUAL TO HIGHER VALUE"

- Even if they have the same function

<u>"batteries</u>" by <u>scalespeeder</u> is licensed under <u>CC BY 2.0</u>

<u>"wind turbines</u>" by <u>Mycatkins</u> is licensed under <u>CC BY 2.0</u>

"Installing solar panels" by OregonDOT is licensed under <u>CC BY 2.0</u>

"Atlantis deploys a 1 MW tidal turbine at European Marine Energy Centre at Orkney, UK" by Green Energy Futures is licensed under <u>CC BY-NC-SA 2.0</u>

Case Study: Energy Storage

Discussion

Conclusion

Back-up

APPLICATIONS OF MPM AND FUTURE WORK

General applications for MPM:

- Giving technology design recommendations (Storage, generators, DSR)
- Evaluating energy technology market potentials (= system-value)

KEY FOR BUSINESS DECISION

Future work. Supporting open source tool improvements:

- Adding new regions to the model (i.e PyPSA-Africa) https://max-parzen.github.io/Project_PyPSA_Africa.html
- Adding new technologies concentrated solar power, marine technologies
- Reduce structural and parameter uncertainty & find approaches to deal with uncertainty

Future work. Performing MPM with probable scenarios:

- Adding data and approaches for probable scenario
- Perform technology assessment

NEXT EARTH MISSION:

Open Energy System Modelling Expansion for regions that benefit the most...

DO YOU WANT TO JOIN?

PROJECT START: 01. MAI.2021 Duration: 6-8 month Current team size: +13 mostly PhD students Advisors: +10 leaders, professionals, experts More details: <u>https://max-parzen.github.io/</u> Source: NASA

Case Study: Energy Storage

Discussion

Conclusion

Back-up

Contact Details

openmod-initiative.org

https://max-parzen.github.io/ (website)

https://github.com/pz-max (repo)

m.parzen@ed.ac.uk

Maximilian Parzen

MAXIMILIAN PARZEN

PhD Candidate, University of Edinburgh, 💳 🛫

Guiding Energy Storage Innovation with Energy System Models

Contact:

Address: Institute of Energy Systems University of Edinburgh Kings Building EH9 3JL Edinburgh, UK +49 176 70889068

Case Study: Energy Storage

Discussion

Back-up

AWESOME OPENMOD COMMUNITY

The whole chain from raw data to modelling results should be open:

Open data + free software \Rightarrow **Transparency + Reproducibility**

There's an initiative for that! Sign up for the mailing list / come to the next workshop:

openmod-initiative.org

Source: <u>"Tom Brown"</u> licensed under <u>CC BY 4.0</u>

BACK UP

Is "Levelized Cost of Storage" (LCOS) a good metric?

Schmidt et al. 2019, "Projecting the Future Levelized Cost of Electricity Storage Technologies", Joule 3, 81–100, <u>https://doi.org/10.1016/j.joule.2018.12.008</u>

Typical assumptions:

- Storage design <u>fixed</u> (Energy to power (EP) ratio is constant)
- Charging price <u>fixed</u> or included <u>by "representative" timeseries</u>
- Full-load-hours <u>fixed</u> (FLH = measure of usage)

Discussion

usion

Back-up

Why high cost is not equal high value?

Difference in:

- spatial-temporal energy system characteristics (network structure, demand profiles, resource potential)
- power profile (i.e. generators)
- design flexibility of components (i.e. energy storage systems)
- efficiency of components
- invest and O&M cost of components

Three Storage Scenarios with different Technology-Constraints

Market-Potential-Method

Discussion

Back-up

Is Increasing the Design Freedom worth it?

Scenario	Total system cost	Relative investment ^a	Curtailment [% of annual demand]		
Fix EP ratio	152.9 B€	4.874 ct/kWh	0.61%		
Var EP ratio	139.9 B€	4.460 ct/kWh	0.73%		
H2-hub	139.7 B€	4.453 ct/kWh	0.37%		
a m , 1 ,	. 11	1			

- Relaxing design constraints
- Reduces **10%** of system cost

^a Total system cost per annual demand

While the system
 doesn't change much

Market-Potential-Method

Discussion

Back-up

How are Storage Components Sized for Optimality?

- The red lines refers to typically built energy-to-power ratio
- EU-system desires slow charge & quick discharge

Back-up – LCOS components and our study

	LCOS components	Zakeri et al. ⁷	Jülch et al. ³⁰	Lazard ³¹ ,32	Lai et al. ³³	Pawel ³⁴	Battk et al. ³⁵	This study	Ou stu
Economic	Investment cost	x	x	x	x	x	x	x	x
	Replacement cost	x	x	X				x	x
	Operating cost	x	x	X	х	x	X	x	x
	Power cost	x	x	X	x	x	x	x	x
	End-of-life cost	x	x			x		x	
	Discount rate	x	x	X	x	x	x	х	x
	Taxes			X					
	Nominal capacity	x	x	x	x	x	x	х	x
	Depth of discharge	x	X	X		x	X	x	
-	Round-trip efficiency	x	x	X	x	x	x	x	x
Technica	Cycle life	x	x				x	x	
	Shelf life	x	X		x	x	X	x	x
	Construction time							x	
	Degradation rate				x	X		x	
	Self-discharge		x					x	

Schmidt et al. 2019, "Projecting the Future Levelized Cost of Electricity Storage Technologies", Joule 3, 81–100, <u>https://doi.org/10.1016/j.joule.2018.12.008</u>

Discussion

sion

Back-up

Back-up – Energy storage distribution

Figure 10: Optimal energy storage charger distribution in the variable energy to power sizing scenario. Showing the location of market potential in a 100% emission reduction scenario. Comparing to Figure 4, most hydrogen units are co-located with wind plants while batteries gravitate towards solar plant optimised areas.

Back-up – Applying the Fourier Transform to analyse the operational behaviour

• Operational charging behaviour at 1 nodes analysed with Fast-Fourier Transform

