Introduction	Model	Data	Results	Conclusion
				-

How do the economic activities influence the air quality in China?

Yangchuan Wang, Zhenyu Yao Agricultural and Applied Economics Department Virginia Tech Blacksburg, Virginia, USA

June 2021

Introduction	Model	Data	Results	Conclusion
•00				

1 Introduction

2 Mode

3 Data

4 Results

5 Conclusion

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	000
Introduction				

• Air pollution is one of the highest environmental health challenges, such as mental illness, depressive symptoms, heart problems and higher mortality.

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	000
Introduction				

- Air pollution is one of the highest environmental health challenges, such as mental illness, depressive symptoms, heart problems and higher mortality.
- China is one of the largest developing countries and experiencing severe air pollution.

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	000
Introduction				

- Air pollution is one of the highest environmental health challenges, such as mental illness, depressive symptoms, heart problems and higher mortality.
- China is one of the largest developing countries and experiencing severe air pollution.
- How to measure the impact of economic activities on air pollution in China?

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	000
Introduction				

• Many studies apply night lights as a proxy of economic activities (Chen and Nordhaus, 2011; Henderson et al., 2012; Henderson et al., 2011; Nordhaus and Chen, 2015).

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	000
Introduction				

- Many studies apply night lights as a proxy of economic activities (Chen and Nordhaus, 2011; Henderson et al., 2012; Henderson et al., 2011; Nordhaus and Chen, 2015).
- Few studies focus on investigating small-scale administrative regions, such as community-level regions.

Introduction	Model	Data	Results	Conclusion
00•	00000	00000	0000000	000
Introduction				

- Many studies apply night lights as a proxy of economic activities (Chen and Nordhaus, 2011; Henderson et al., 2012; Henderson et al., 2011; Nordhaus and Chen, 2015).
- Few studies focus on investigating small-scale administrative regions, such as community-level regions.
- In this study, we investigate the impact of activities based on monthly night lights on air pollution at the community-level administrative regions in China.

Introduction	Model	Data	Results	Conclusion
000	●oooo	00000	0000000	000

1 Introduction

2 Model

3 Data

4 Results

5 Conclusion

Wang & Yao (Virginia Tech, USA)

Introduction	Model	Data	Results	Conclusion
000	o●ooo	00000	0000000	000
Model				

- Our study uses nighttime light as the proxy of nighttime economic activity.
- While many industrial plants do not emit light at night, nighttime economic activities in service sectors are normally observable and hence can be captured by their light emission.
- Our study assume that all the nighttime economic activities can be captured by nighttime lights.

Introduction	Model	Data	Results	Conclusion
000	oo●oo	00000	0000000	000
Model				

• Our baseline model to estimate the effect of nighttime light $(NL_{i,t})$ on nighttime AQI $(AQI_{N,i,t})$ at community *i* in city *k* in month *t* is specified as:

$$AQI_{N,i,k,t} = \alpha_i + \beta NL_{i,k,t} + \delta X_{i,k,t} + f_{i,k,t} + \varepsilon_{N,i,k,t}$$
(1)

- X_{*i*,*k*,*t*}: meteorological covariates such as air temperature and precipitation
- $f_{i,t}$: the full set of location dummies interacted with time dummies
- α_i : the fixed effect of community *i* in city *k* in month *t*

Introduction	Model	Data	Results	Conclusion
000	ooo●o	00000	0000000	
Model				

- Equation (1) can bring in a potential **endogenous** problem if people stay indoors caused by heavy air pollution outsides.
- Salvo (2020): A local pollution was a determinant of electricity demand under poor air quality; naked eye can detect differences in PM2.5 concentrations below 10 μg/m³ versus above 50 or 100 μg/m³.
 - Inference: If the air quality gets worse, i.e., AQI $\in [100, +\infty)$ & PM 2.5 $\in [75, +\infty]$, people can detect the bad air qualify and is likely to stay at home.
- Under a certain level, pollution will not affect the indoor activities and further not affect nighttime light.

Introduction	Model	Data	Results	Conclusion
000	ooooo●	00000	0000000	
Model				

Nighttime differenced air quality indicators $(AQI_{F,i,k,t})$, derived by $AQI_{F,i,k,t} = AQI_{N,i,k,t} - AQI_{D,i,t}$, where $AQI_{N,i,k,t}$ is the nighttime AQI and $AQI_{D,i,k,t}$ is the daytime AQI at community t in month t.

$$AQI_{F,i,k,t} = \alpha_i + \phi NL_{i,k,t} + \delta X_{i,k,t} + f_{i,k,t} + \varepsilon_{F,i,k,t}$$
(2)

Introduction	Model	Data	Results	Conclusion
000	00000	●0000	0000000	000

1 Introduction

Wang & Yao (Virginia Tech, USA)

Figure 1: Average Nighttime Light in the Communities of Guangdong Province

→ □ ▶ → 個 ▶ → 目 ▶ → 目 ▶ → ○ ●

Introduction	Model	Data	Results	Conclusion
000	00000	oo●oo	0000000	
Data				

Table 1: Descriptive Statistics for nighttime pollution, meteorological variables and light

Variables	Observations	sUnit	MeanMediar	nS.D. Maximun	nMinimum
AQI	83917	index	72.3665.16	33.57469.60	12.00
pm 2.5	83872	ug/m3	46.1039.57	27.75653.62	2.67
pm 10	83847	ug/m3	81.1571.53	45.361517.38	0.80
со	83898	ug/m3	0.97 0.86	0.59 68.00	0.04
no2	83845	ug/m3	34.3131.95	17.16271.75	1.00
so2	83857	ug/m3	17.6312.42	18.41556.28	1.12
Air Temperature	e89855	celsius degree	13.5215.13	10.3736.87	-30.39
Precipitation	79694	millimeters (mm))33.8725.33	31.87372.00	0.00
Nighttime Light	89871	nW/cm2/sr	11.578.39	11.14126.36	0.00

Introduction	Model	Data	Results	Conclusion
000	00000	000●0	0000000	

 $\overline{AQI}_{N,i,k,t}$

Monthly Nighttime Pollution Distribution in 2015-2019

Wang & Yao (Virginia Tech, USA)

Introduction	Model	Data	Results	Conclusion
000	00000	0000●	0000000	000

 $AQI_{F,i,k,t}$

Monthly Nightly Differenced Pollution in 2015-2019

Wang & Yao (Virginia Tech, USA)

Air pollution

Introduction	Model	Data	Results	Conclusion
000	ooooo	00000	●000000	

1 Introduction

2 Mode

3 Data

5 Conclusion

Wang & Yao (Virginia Tech, USA)

Introduction	Model	Data	Results	Conclusion
000	ooooo	00000	0●00000	
Results				

Table 2: Main nighttime air quality indicators and nighttime light estimations for the full sample

Dependent Variable:	AG)I	PM 2.5		PM 10	
	(1)	(2)	(3)	(4)	(5)	(6)
Nighttime Light	0.0573***	0.0545	0.0242	0.0680**	0.0672***	0.0367
	(0.0077)	(0.1058)	(0.2169)	(0.0249)	(0.0095)	(0.4049)
Air Temperature	Yes	Yes	Yes	Yes	Yes	Yes
Precipitation	Yes	Yes	Yes	Yes	Yes	Yes
Community FE	Yes	Yes	Yes	Yes	Yes	Yes
City FE		Yes		Yes		Yes
Month $ imes$ city FE	Yes		Yes		Yes	
Province \times year FE	Yes		Yes		Yes	
Month $ imes$ year FE	Yes		Yes		Yes	
Month \times year \times province FE		Yes		Yes		Yes
Observations	74519	74504	74475	74460	74456	74439
R-squared	0.839	0.841	0.821	0.817	0.827	0.817
Notes: P-value in parentheses. * p<0.10, ** p<0.05, *** p<0.01						

Introduction	Model	Data	Results	Conclusion
000	ooooo	00000	00●0000	000
Results				

Table 3: Main nighttime air quality indicators and nighttime light estimations when **air quality is at good or moderate level**

Dependent Variable:	AG)I	PM	2.5	PM	10
	(1)	(2)	(3)	(4)	(5)	(6)
Nighttime Light	0.0441***	0.0100	0.0169**	0.0229**	0.0817***	-0.0128
	(0.0000)	(0.4368)	(0.0468)	(0.0477)	(0.0000)	(0.4972)
Air Temperature	Yes	Yes	Yes	Yes	Yes	Yes
Precipitation	Yes	Yes	Yes	Yes	Yes	Yes
Community FE	Yes	Yes	Yes	Yes	Yes	Yes
City FE		Yes		Yes		Yes
Month $ imes$ city FE	Yes		Yes		Yes	
Province \times year FE	Yes		Yes		Yes	
Month $ imes$ year FE	Yes		Yes		Yes	
Month $ imes$ year $ imes$ province FE		Yes		Yes		Yes
Observations	62037	62044	64767	64771	68815	68815
R-squared	0.819	0.833	0.806	0.816	0.832	0.847
Notes: P-value in parentheses. * p<0.10, ** p<0.05, *** p<0.01						

Introduction	Model	Data	Results	Conclusion
000	00000	00000	000●000	000
Results				

Table 4: Nightly differenced air quality indicators and nighttime light estimations when air quality is at good or moderate level

Dependent Variable:	AQI		PM 2.5		PM 10	
	(1)	(2)	(3)	(4)	(5)	(6)
Nighttime Light	0.0064	0.0148*	0.0087	0.0124**	0.0134	-0.0028
	(0.4897)	(0.0980)	(0.1306)	(0.0434)	(0.2133)	(0.8048)
Air Temperature	Yes	Yes	Yes	Yes	Yes	Yes
Precipitation	Yes	Yes	Yes	Yes	Yes	Yes
Community FE	Yes	Yes	Yes	Yes	Yes	Yes
City FE		Yes		Yes		Yes
Month \times city FE	Yes		Yes		Yes	
Province \times year FE	Yes		Yes		Yes	
Month $ imes$ year FE	Yes		Yes		Yes	
Month $ imes$ year $ imes$ province FE		Yes		Yes		Yes
Observations	60494	60489	62996	62995	67175	67152
R-squared	0.603	0.569	0.661	0.570	0.553	0.522
Notes: P-value in parentheses. * p<0.10, ** p<0.05, *** p<0.01						

Introduction	Model	Data	Results	Conclusion
000	ooooo	00000	0000●00	000

Results

- Other Pollutants
- Seasonal Variations
- Spatial Effects (in progress)
- Heavy Pollution (in progress)

Introduction	Model	Data	Results	Conclusion
000	00000	00000	00000●0	
Results				

Table 5: Nightly differenced co, no2, so2 and nighttime light estimations when air quality is at good or moderate level

Dependent Variable:	CO		NO2		SO2	
	(1)	(2)	(3)	(4)	(5)	(6)
Nighttime Light	0.0001	-0.0001	-0.0018	0.0129*	0.0431***	0.0105
	(0.3972)	(0.5283)	(0.8073)	(0.0792)	(0.0000)	(0.2260)
Air Temperature	Yes	Yes	Yes	Yes	Yes	Yes
Precipitation	Yes	Yes	Yes	Yes	Yes	Yes
Community FE	Yes	Yes	Yes	Yes	Yes	Yes
City FE		Yes		Yes		Yes
Month $ imes$ city FE	Yes		Yes		Yes	
Province $ imes$ year FE	Yes		Yes		Yes	
Month $ imes$ year FE	Yes		Yes		Yes	
Month $ imes$ year $ imes$ province FE		Yes		Yes		Yes
Observations	71410	71384	71371	70891	70920	71343
R-squared	0.589	0.529	0.528	0.741	0.756	0.469
R-squared	0.589	0.529	0.528	0.741	0.756	0.469
Notes: P-value in parentheses. * p<0.10, ** p<0.05, *** p<0.01						

Introduction	Model	Data	Results	Conclusion
000	00000	00000	000000●	
Results				

Table 6: Nightly differenced air quality indicators and nighttime light estimations for four seasons when **air quality is at good or moderate level**

	April -	- June	July - Se	ptember	October -	December	January	- March
Dependent Variable:	A	QI	A	2I	A	QI	AC	ול
Mean of Nightly Diff AQI	-0.	84	-1.	09	5.	00	4.9	90
Nighttime Light	-0.0059	0.0012	0.0237*	0.0041	-0.0118	0.0110	0.0308**	0.0342*
	(0.5960)	(0.9136)	(0.0852)	(0.7343)	(0.3987)	(0.5404)	(0.0464)	(0.0561)
Air Temperature	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Precipitation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Community FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
City FE		Yes		Yes		Yes		Yes
Month \times city FE	Yes		Yes		Yes		Yes	
Province \times year FE	Yes		Yes		Yes		Yes	
Month $ imes$ year FE	Yes		Yes		Yes		Yes	
Month \times year \times province FE		Yes		Yes		Yes		Yes
Observations	17504	17496	18760	18756	13735	13199	10914	10920
R-squared	0.570	0.580	0.609	0.608	0.653	0.622	0.716	0.687

Notes: P-value in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	●00

1 Introduction

2 Mode

3 Data

Introduction	Model	Data	Results	Conclusion
000	00000	00000	0000000	○●○
Conclusion				

- We firstly apply the night lights as a measurement of economic activities and investigate the effect of night lights on air pollution in developing country context.
 - Under the good air quality, the effect is significantly positive.
- This study also contributes to the literature on empirically estimating the satellite imagery night lights on air pollution with a wide range of spatial and temporal variation.

Introduction	Model	Data	Results	Conclusion
				000
000	00000	00000	0000000	000

Thank you very much!