Getting to India's Electric Vehicle Targets Cost-effectively

Gireesh Shrimali, PhD

Precourt Scholar, Stanford University

gireesh@stanford.edu

India has ambitious plans for EVs

Background

- India has ambitious climate targets for 2030
 - 40% of electricity generation capacity by RE
 - 30% of vehicle fleet by EVs
- There are many barriers to EV adoption
 - Higher CAPEX, despite lower OPEX: Battery costs coming down
 - Less attractive models: Changing now, e.g., due to Tesla
 - Range anxiety: Improving over time & models
 - Unknown technology, esp. batteries
- We focus on the first barrier, i.e., higher CAPEX
 - We examine total cost of ownership

This study

- India has announced FAME policies to subsidize EVs
 - Multiple vehicles are covered
 - Covered: 2W, 3W, 4W-cars, 4W-buses
 - Not covered: 4W-taxis, 4W-trucks
 - Upfront (CAPEX) subsidies are provided
 - FAME-I (2015): INR 7,980 million
 - FAME-II (2019): INR 100,000 million
- We ask two questions
 - Which vehicle segments should be subsidized, if at all?
 - Which policy CAPEX, OPEX, FINEX should be used to subsidize?

FAME is quite detailed

Table 1: Two Wheeler (Category L1, L2 & ≤ 250 W)

SEGMENT	INCENTIVE (Rs)		
Scooter	Level 1	Level 2	
Mild HEV (Conventional Battery)	1800/-	2200/-	
Mild HEV (Advance Battery)	3600/-	4300/-	
Plug-in HEV (Advance Battery)	13000/-	15600/-	
BEV (Conventional Battery)*	7500/-	9400/-	
BEV (Advance Battery)*	17000/-	22000/-	
Motor Cycle	Level 1	Level 2	
Mild HEV (Conventional Battery)	3500/-	4200/-	
Mild HEV (Advance Battery)	5200/-	6200/-	
Plug-in HEV (Advance Battery)	15000/-	18000/-	
BEV (Conventional Battery)*	9600/-	12000/-	
BEV (Advance Battery)*	23000/-	29000/-	
Note: In case of BEV 2W, 'Level 1' incentive is applicable for 2 Wheeler with 'max power not			
exceeding 250 Watts' and 'Level 2' incentive is applicable for others BEV 2W.			

Methods and data

- Financial cash flow based analysis
 - Many useful metrics exist: CAPEX, Payback, IRR
 - Need to compare based on lifetime costs
- We use NPV and TCO
 - TCO is used to compare equivalent EV and ICEV: Private perspective
 - NPV is used to calculate the cost of subsidy: Public perspective

Vehicle type	Driven per day (Km)	Duration (years)	ICEV CAPEX (INR) [Vehicle]	EV CAPEX (INR) [Vehicle]
2W-personal	18	10	60,000 [Activa]	58,990 [Hero Nyx 5]
2W-freight	100	10	60,000 [Activa]	58,990 [Hero Nyx 5]
3W	120	10	187,000 [Generic CNG Auto]	214,000 [M&M Yari]
4W-taxi	225	10	772,000 [Generic Car]	1,317,000 [M&M Verito]
4W-car (personal)	60	10	772,000 [Generic Car]	1,317,000 [M&M Verito]
4W-bus- intracity (9M)	200	20	4,500,000 [Generic Bus]	5,685,000 [Generic]
4W-bus- intercity (9M)	500	20	6,000,000 [Generic Bus]	8,580,000 [Generic]
4W-truck	500	20	2,500,000 [Benz 25T]	11,325,000 [Benz EV 25T]

Results (1): TCO parity

Vehicle type	TCO-ICE (INR/km)	TCO-EV (INR/km)	TCO-EV/ TCO-ICE (%)	Need subsidy?
2W-personal	5.06	3.49	69%	No
2W-freight	2.08	1.04	50%	No
3W	4.05	3.28	81%	No
4W-taxi	9.12	8.59	94%	No
4W-car	18.05	23.17	138%	Yes
4W-bus-intracity (9M)	54.91	46.11	84%	Νο
4W-bus-intercity (9M)	43.57	34.68	80%	No
4W-truck	30.45	46.72	153%	Yes

Results (2): Subsidies

Vehicle type	CAPEX-	OPEX-subsidy	FINEX-subsidy	
	subsidy (INR)	(INR)	(INR)	
	[% of CAPEX]	[% of CAPEX]	[% of CAPEX]	
4W-car	589,025	699,513	724,927	
	[36%]	[+43%]	[+44%]	
4W-truck	16,158,245	21,239,069	NA	
	[34%]	[+44%]		
As a % of CAPEX				

Vehicle type	CAPEX- subsidy (INR)	OPEX-subsidy (INR)	FINEX-subsidy (INR)	
		[% increase]	[% increase]	
4W-car	589,025	699,513	724,927	
		[+19%]	[+23%]	
4W-truck	16,158,245	21,239,069	NA	
		[+31%]		
As a % of CAPEX subsidy				

Discussion: Is FAME doing the right thing?

- Which vehicles need subsidy?
 - Many EVs 2Ws, 3Ws, 4W-taxis, 4W-buses don't need subsidies at all
 - The CAPEX differences are not much to begin with OR
 - The OPEX differences are significant due to high miles driven
 - Some EVs 4W-cars, **4W-trucks** need subsidies
 - The CAPEX differences are significant AND
 - The OPEX differences are not able to compensate, despite high miles driven
- Which subsidy is most cost-effective?
 - **CAPEX-subsidy** is the most cost-effective
 - FINEX-subsidy is the last cost-effective

Discussion: How to address higher CAPEX?

- Lower NPV/TCO: How to make it appealing to the buyer?
 - Higher CAPEX means higher upfront payment (if buying) or higher recurring payment (if borrowing or leasing): Buyer cares
 - Much lower OPEX: Buyer does not seem to care as much and, therefore, ends up discounting heavily
- Solution: Annualize payments
 - Option 1: Combine CAPEX and OPEX and annualize discounted sum into equal payments like an annuity
 - Option 2: Separate battery payments from EV payments and combine battery payments with fuel payments
- Harder to do than it sounds: Who would provide the annuity?
 - Option 1: How to address fuel price volatility?
 - Option 2: Can we create good financial models for battery leasing?

Questions?

gireesh@stanford.edu

Number of vehicles in India

EV sales in India

	ELECTRIC VEHICLE SALES IN INDIA			
	Segment Of Electric Vehicle	FY 2018-19	FY 2017-18	S
	Two Wheelers 🔁	1,26,000	54,800	1
	Three Wheelers 🛛 🕢 🚱	6,30,000	5,20,000	
	Four Wheelers	3,600	1,200	
4	Total	7,59,600	5,76,000	