The macroeconomic effects of climate shocks in Europe

F.S. Lucidi, M.M. Pisa, M. Tancioni

Sapienza University of Rome

IAEE Conference June 9, 2021

F.S. Lucidi, M.M. Pisa, M. Tancioni (SapienzThe macroeconomic effects of climate shocks IAEE Conference June 9, 2021 1/17

Outline

э

Motivation

- Increasing climatic variability (temperatures and precipitations) due to global warming; expected divergent changes across EZ's climatic areas (IPCC, 2019)
- How this affects macroeconomic dynamics? Are policy-relevant variables involved in the changes? Need to get some info from recent hystorical data
- With a centralized MP that targets aggregate EZ inflation, asymmetric (idiosyncratic) shocks do matter \rightarrow Further source of price dispersion
- Evaluate the effects of climate shocks for EZ's MP-relevant target variables prices in the first place

Related literature

- Schlenker and Roberts (2009) → Nonlinear and asymmetric relationship between temperatures and yields
- Dell et al. (2012) \rightarrow Rising temperatures negatively affect economic growth
- Donadelli et al. (2017) \rightarrow Significant impact of temperature shock on TFP, output, and labour productivity (standard VAR)
- Donadelli et al. (2020) \rightarrow Temperature volatility shocks

マロト イヨト イヨト ニヨ

This paper

- What we DO:
- Temperature shocks in EZ countries
- Non-linear effects
- What we DO NOT do:
- Extreme-weather events
- Heterogeneity within countries (only average data)

Variables

Climatic variable

Temperature (Temp, CRU)

- T_t : Average monthly temperature
- \overline{T} : Historical sample monthly average temperature

$$Temp_t = T_t - \overline{T}$$

Macroeconomic variables

```
Gross value-added of agriculture (VAA, Eurostat)
Energy production (EnProd, Eurostat)
CPI of food (CPF, FAOSTAT)
CPI of energy (CPEn, OECD)
Harmonized CPI - all items (CPI, Eurostat)
EZ Harmonized CPI - core (EZCPI, FRED Economic Data)
```

(日)

3

The empirical model

• Structural Vector Auto-regressive model (SVAR):

$$A(L)Y_t = \epsilon_t \tag{1}$$

$$A(L) = A_0 - A_1 - \dots - A_p$$
 (2)

 $Y'_t = [\text{Temp}_t \quad \text{VAA}_t \quad \text{EnP}_t \quad \text{CPF}_t \quad \text{CPE}_t \quad \text{CPI}_t \quad \text{EZCPI}_t]$ (3)

- Estimation method: Bayesian (Minnesota Prior Full BSVAR)
- Sample: 2000m1 2016m12

IRFs to COLD shock in northen countries

¹Austria, Belgium, Finland, France, Germany, Ireland, Italy, Netherlands **B B O O O C** F.S. Lucidi, M.M. Pisa, M. Tancioni (SapienzThe macroeconomic effects of climate shocks IAEE Conference June 9, 2021 8/17

IRFs to HOT shock in northen countries

¹Austria, Belgium, Finland, France, Germany, Ireland, Italy, Netherlands E Service States (Section 19, 2021) F.S. Lucidi, M.M. Pisa, M. Tancioni (Sapienz The macroeconomic effects of climate shocks IAEE Conference June 9, 2021) 9/17

Identification issues

- Cholesky:
- Symmetric and linear response of macro-variables to negative and positive temperature shocks
- Has a positive temperature shock the same impact of a negative one in abs. value? If not, does the country weather-structure matter?
- \Rightarrow Recursive structure (as in Cholesky) + sign restrictions:
- Allows to differentiate + and temperature shocks
- How? One more variable and some theory...

Variable: variance of vapour pressure

- Gay-Lussac's law: The pressure of a fixed mass of gas held at constant volume is directionally proportional to its Kelvin temperature → VP increases, Temp increases and vice versa
- VP_t^1 : average daily vapour pressure
- VPvart: monthly variance of the vapour pressure (from daily observations):

$$VPvar_t = \frac{\sum_{d=1}^{n} (VP_d - \overline{VP})^2}{n-1}$$
(4)

 $Y'_{t} = \begin{bmatrix} \text{Temp}_{t} & \text{VPvar}_{t} & \text{VAA}_{t} & \text{EnP}_{t} & \text{CPF}_{t} & \text{CPE}_{t} & \text{CPI}_{t} & \text{EZCPI}_{t} \end{bmatrix}$ (5)

¹Data of the daily vapour pressure (VP_t) - defined in Hp - retrieved by www.ogimet.com

F.S. Lucidi, M.M. Pisa, M. Tancioni (SapienzThe macroeconomic effects of climate shocksIAEE Conference June 9, 2021 11/17

Identification

• Mixed set-point near-Cholesky on A₀:

	[+]	_	0	0	0	0	0	0]	
$A_0 =$	+	+	0	0	0	0	0	0	
	a ₃₁	a ₃₂	a 33	0	0	0	0	0	
	a ₄₁	a 42	a 43	a 44	0	0	0	0	
	a ₅₁	<i>a</i> ₅₂	a 53	<i>a</i> 54	<i>a</i> 55	0	0	0	
	a ₆₁	<i>a</i> ₆₂	<i>a</i> 63	<i>a</i> ₆₄	a 65	<i>a</i> 66	0	0	
	a ₇₁	a ₇₂	a ₇₃	a ₇₄	a ₇₅	a ₇₆	a ₇₇	0	
	a ₈₁	a ₈₂	a ₈₃	<i>a</i> ₈₄	a ₈₅	a ₈₆	a ₈₇	a ₈₈	

3

-

Preliminary results

Figure: Spain. IRFs to a positive and negative Temp shocks

Preliminary results

Figure: Greece. IRFs to a positive and negative Temp shocks

-

Preliminary results

Figure: Italy. IRFs to a positive and negative Temp shocks

Discussion

- Responses to temperature shocks are generally relevant for macroeconomy. The issue may be relevant for policy-makers
- Temperature shocks have significantly nonlinear (differential) effect for positive and negative deviations from historical values
- Evidence of significant heterogeneity in the cross-country responses
- Additional source of heterogeneity for EZ countries. Should the CB target variations in inflation triggered by climate shocks?
- Further research needed to focus on extreme climatic events, long-term change, trasmission channels.

- 4 回 ト 4 三 ト 4 三 ト

Thanks for your attention

э

・ 何 ト ・ ヨ ト ・ ヨ ト