

Long-term Electricity Market Equilibria with Storage in the Presence of Stochastic Renewable Infeed

Prof. Christoph Weber

IAEE 1st Online Conference June 9, 2021

UNIVERSITÄT DUISBURG ESSEN

Increasing interest in storage – main drivers

UNIVERSITÄT DUISBURG ESSEN

- Technology development
 - Particularly in Li-Ion batteries
 - But also Redox-flow batteries, Zinc-air batteries, CAES are discussed
- High-pace transition of generation landscape
- Generation adequacy with intermittent renewables being a challenge
 - Wind and PV with very low capacity credit
 - Availability of controllable thermal capacity not evident
- Electricity storage as a complement?

Starting point: wide range of literature

UNIVERSITÄT DUISBURG ESSEN

- Theoretical literature
 - System perspective
 - Efficient storage operation and investment: Jackson (1973), Gravelle (1976), Steffen & Weber (2012), Lamont (2013), Böcker & Weber (2018)
 - Strategic behavior of storage and others, e.g. Sioshansi (2010)
 - Individual power plant perspective
 - Deterministic storage operation: e.g. Steffen & Weber (2016)
 - Optimal storage operation under uncertainty, e.g. Sioshansi et al. (2009, 2011)
 - Optimal storage operation strategies using LSMC, ASDDP, e.g. Carmona & Ludkovski (2010), Secomandi (2010), Löhndorf et al. (2013)
- Applied work
 - Long term techno-economic analyses e.g. Sinage (2009), IEA(2013), EPRI (2013)
 - Tools for optimal operation under uncertainty using e.g. LSMC
- Combination of system perspective and consideration of uncertainties in the longterm rather rare

- How can optimal storage investment and operation in the presence of uncertainty be described in a system perspective?
- What **drives** the **value of storage** in such a setting?

Table of contents	UNIVERSITÄT DUISBURG ESSEN	
	Offen im Denken	
Background & motivation	1	
Problem formulation	2	
Stylized application	3	
Larger numerical application	4	
Final remarks	5	

- Combine long-term equilibrium with short term uncertainty
- Representation of short-term uncertainty through (circular) Markov process
 - Discrete time, discrete state representation of a mean reversion process
- Exogenous state "variable": Residual demand
- Endogenous state variable: Storage filling level
- Long-term decision making: specification of capacities of generators and storage as variables

- To start: time-invariant probabilities $\pi_{t,i} = \pi_i, \psi_{t,i,i'} = \psi_{i,i'}$
- Convolution property: $\boldsymbol{\pi}^{\mathrm{T}} \boldsymbol{\Psi} = \boldsymbol{\pi}^{\mathrm{T}}$

Stylized system model – objective function

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

System cost minimization

$$\min_{K_{i},V,y_{t,i,j},s_{t,i}^{+},s_{t,i}^{-}} Z$$

$$Z = \sum_{t,i,j,s,s'} \pi_{t,i} c_{j}^{var} y_{t,i,j,s,s'} \Delta t + \sum_{j} c_{j}^{inv} K_{j} + c^{inv,St} V$$

With:

- *y*_{t,i,j} production of generator *j*
- K_j capacity of generator j
- *V* volume of storage (with full-load hours *H*, i.e. C-rate 1/*H*
- $s_{t,i}^+$, $s_{t,i}^-$ storage charging/discharging

Stylized system model –constraints

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Supply-Demand balance:

$$\sum_{j} y_{t,i,j} + s_{t,i}^{-} \ge D_{t,i} + s_{t,i}^{+}$$

Capacity constraints generators & storage:

$$y_{t,i,j} \le K_j$$
$$s_{t,i}^+ + s_{t,i}^- \le \frac{1}{H}V$$

Filling level dynamics:

 $f_{t,i}^{nx} = f_{t,i} + \eta s_{t,i}^+ + s_{t,i}^-$

Filling level evolution under Markov process:

$$\sum_{i'} \pi_{t',i'} \psi_{t-1,i',i} f_{t,i}^{nx} = \pi_{t,i} f_{t,i}$$

Filling level constraints:

$$f_{t,i}^{nx} \le V$$

Table of contents	UNIVERSITÄT DUUSBURG ESSEN
	Offen im Denken
Background & motivation	1
Problem formulation	2
Stylized application	3
Larger numerical application	4
Final remarks	5

Drivers of storage investment

UNIVERSITÄT D_U_I_S_B_U_R_G E_S_S_E_N *Offen im Denken*

- Deterministic variations of net demand
- Predictable stochastic variations of net demand
- Mean-reverting stochastic variations of net demand
- Generator mix high capex vs. high opex technologies
- Value of lost load

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

	Capacity costs	Other fix costs	Fuel cost	Efficiency	Emission intensity	Operational costs
	k€/MW	k€/MW/a	€/MWh _{th}	%	t _{CO2} /MWh _{th}	€/MWh
Lignite	1800	0	4	43%	0.4	27.91
Hard coal	1600	0	7	45%	0.34	30.67
CCGT	800	0	25	60%	0.2	48.33
OCGT	500	0	25	35%	0.2	82.86
VoLL	0.01	0	10000	100%	0	10000
Li-lon	100 k€/MWh	0		90%		

Annuity factor 0.1, further downscaled to one representative day
 Exogenously set CO₂ price: 20 €/t

Demand specification

- One representative typical day
- Six time intervals of four hours each
- Sinuisoidal deterministic demand component

$$\mu_t^D = \mu_0 + a \cdot \sin(\psi t + \theta)$$

UNIVERSITÄT

D_U_I_S_B_U_R_G

Offen im Denken

Mean-reverting stochastic demand component

$$dx_t = -\kappa \cdot x_t \cdot dt + \sigma \cdot dW_t$$

Total demand

$$D_t = \mu_t^D + x_t$$

In discrete time

$$D_t^{|x_{t0}} \sim N\left(\mu_t^D + e^{-\kappa(t-t0)} x_{t0}, \frac{\sigma^2}{\kappa} \cdot \left(1 - e^{-2\kappa(t-t0)}\right)\right)$$

Demand parameters

- Mean demand: $\mu_0 = 65 \text{ GW}$
- Amplitude deterministic variation: a = 15 GW
- Phase angle deterministic variation: $\theta = \frac{\pi}{2}$
- Mean reversion speed: $\kappa \approx \frac{1}{3 \cdot 24 h}$
- Some approximations needed for discretization
- Resulting unconditional and conditional probabilities

$$\Pi_t = \begin{pmatrix} 0.003 \\ 0.242 \\ 0.509 \\ 0.242 \\ 0.003 \end{pmatrix}, \Psi_t = \begin{pmatrix} 0.918\ 0.082 & 0 & 0 & 0 \\ 0.001\ 0.957\ 0.042 & 0 & 0 \\ 0 & 0.020\ 0.960\ 0.020 & 0 \\ 0 & 0 & 0.042\ 0.957\ 0.001 \\ 0 & 0 & 0 & 0.082\ 0.918 \end{pmatrix}$$

Sensitivities considered

- 1) Cases *Reference*
 - As described above
- 2) Case No deterministic variation
 - Sinusoidal variation set to zero
- 3) Case *No mean reversion*
 - Persistence of demand level, no short term stochastics
 - Mean-reversion set to zero, i.e. transition matrix with 1's on the diagonal
 - Corresponds to limiting case
- 4) Case *Full mean reversion*
 - Full unconditional stochastic uncertainty applies in each time step
 - Conditional distribution is equal to unconditional distribution
- 5) Case *No determ. & Full MR*
 - Combination of cases 2) and 4)
- Unconditional stochastic distribution is identical in all cases

UNIVERSITÄT DUISBURG ESSEN

	Deference	No determ.	No mean	Full mean	No determ.
		Variation	reversion	reversion	& full MR
Lignite	55.0	55.0	55.0	66.3	65.3
Hard Coal	9.7	10.0	10.0	0.0	0.0
CCGT	10.3	10.0	10.0	0.0	0.0
OCGT	11.2	10.0	11.3	0.0	0.0
Lost Load	0.0	0.0	0.0	0.0	0.0
Total Gen	86.2	85.0	86.3	66.3	65.3
Storage	23.4	0	23.4	46.7	29.0
Total Gen + Stor	109.6	85.0	109.7	113.0	94.3
Max Demand	98.0	85.0	98.0	98.0	85.0
System Cost [M€]	91.9	88.6	91.9	89.3	86.6

Storage Usage – precautionary storage

UNIVERSITÄT DUISBURG ESSEN

	Reference	No determ. Variation	No mean reversion	Full mean reversion	No determ. & full MR
Storage [GWh]	93.5	0	93.5	186.6	115.9
Filling Level <i>f</i> _{t,i}					
Minimum	0%		0%	43%	68%
Maximum	100%		100%	95%	68%

- Cases Reference and No mean reversion: Low stochastics, available storage volume is fully used in planning
 - > No precautionary storage
- Case Full mean reversion stochastic and deterministic components in variation
 - precautionary storage accounts for about half of storage volume
- Case No determ. & Full MR
 - > only precautionary storage, since no predictable variation

Table of contents	UNIVERSITÄT DUISBURG ESSEN	
	Offen im Denken	
Background & motivation	1	
Problem formulation	2	2
Stylized application	3	3
Larger numerical application		1
Final remarks	5	5

Case Study - Key elements

German **time series for three full years** (period 07/2016 – 06/2018)

- Load
- Wind onshore & offshore
- Solar
- Taken from smard.de, load scaled to annual electricity consumption in GER

UNIVERSITÄT

DUISBURG

Offen im Denken

- Computation of net load for each observation
- Construction of one representative day
 - Hourly time intervals
 - 10 net load levels
 - Specific load levels per hour, corresponding to **deciles of the hourly distribution**
- Probabilities
 - Unconditional probabilities by construction all equal to 0.1

Conditional probabilities obtained by counting empirical state transitions
 House of (not hour-specific)

Case Study - Key results

UNIVERSITÄT DUISBURG ESSEN

[GW]	Reference
Lignite	34.0
Hard Coal	11.5
CCGT	17.0
OCGT	2.7
Lost Load	0.0
Total Gen	65.2
Storage	16.3
Total Gen + Stor	81.4
Max Demand	75.4
System Cost [M€]	70.6

	Reference
Storage [GWh]	65.2
Filling Level <i>f</i> _{t,i}	
Minimum	5.1%
Maximum	99.9%

- Storage part of the efficient portfolio
- Precautionary storage corresponding to 5 % of storage volume

Final remarks

- Long-term electricity market equilibrium including impact of short-term uncertainties can be formulated as stochastic linear program
 - Greenfield approach used here
 - Could be extended to multiannual expansion planning
- Profitability of storage depends on
 - Deterministic variations of net demand
 - Predictable stochastic variations of net demand
 - Mean-reverting stochastic variations of net demand
 - Generator mix
 - Value of lost load
- Precautionary storage gets important
 - with low deterministic and high stochastic, unpredictable fluctuations
 - Case study for Germany suggests currently 5 %
 - Adequate description of net demand including several deterministic and stochastic processes required

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Thank you for your interest

Prof. Dr. Christoph Weber

Chair for Energy Economics House of Energy Markets and Finance University Duisburg-Essen E-Mail: christoph.weber@uni-due.de

