Firm's Perspective on Energy Transition: Energy Projects Portfolio Formation

By Sofia A. Berdysheva, Svetlana A. Ikonnikova

Presented by Berdysheva Sofia sofia.berdysheva@tum.de

Uhrenturm der TVM

Pressure on oil and gas industry: Public

- Mass protests and petitions against oil and gas companies
 - Environmental opposition in Australia has led ban of hydraulic fracturing in Victoria state and moratoriums in New South Wales and Tasmania. Hydraulic fracturing is legal only on 2% of territory in Western Australia.
- Increasing interest for sustainable and social-responsible investments
 - From 2008 to 2018 in the USA sustainable and responsible investments have grown 10 times and now it accounted for 26% of total assets under professional management in 2018
- The World Wide Fund for Nature released online tool to help asset managers to align their portfolios with environmentally sustainable future

https://www.reuters.com/article/us-australia-gas/australias-northern-territory-lifts-fracking-ban-idUSKBN1HN360 US SIFReport on US Sustainable, Responsible and Impact Investing Trends 2018 https://www.bloomberg.com/news/articles/2020-01-30/as-investing-goes-green-environmental-warriors-are-here-to-help? cmpid=BBD013020_GREENDAILY&utm_medium=email&utm_source=newsletter&utm_term=200130&utm_campaign=greendaily

Pressure on oil and gas industry: Governments

- Increasing greenhouse gases emissions costs or encouraging its reduction
 - Canada (2016) Greenhouse Gas Industrial Reporting and Control Act (British Columbia)
 - UK (2014) Climate Change Agreement
 - Launch of EU ETS trading scheme in 2005
- Forbid on oil and gas exploration in some areas
 - France (2017) Bans hydraulic fracturing on its territory
- Constrains on resource use
 - Canada, France, and the United Kingdom committed to phase out all coal plants by 2030

Lou, "Canada Speeds up Plan to Phase out Coal Power, Targets 2030"; Williams, "France Follows UK in Naming Coal Phase-out Date"; BBC News, "UK's Coal Plants to Be Phased out within 10 Years."

Pressure on oil and gas industry: Investors

- Increase in capital cost for projects which are related to fossil fuels
- Issue of Green Bonds
- Divestment from oil and gas sector which can be explained by:
- S&P 500 returns are higher than return on oil and gas companies, but dividend yield are higher
- The total returns on stocks of large oil and gas companies which are listed on European and US stocks in 2017-2018 were below than global average total return on oil and gas sector
- 3. Reputational issues

Equity performance of majors and global listed companies by selected sector

ТШП

Reaction by oil and gas industry

- Under this pressure and in a view of other developments, oil and gas industry has started investing in "low-carbon" projects changing its portfolio
 - Shell invests into H2 Mobility project in Germany
 - Exxon is going to use wind and solar energy for crude oil extraction
 - Equinor (Formerly Statoil) invests into floating wind farm in Scotland
- Some may switch completely
 - Ørsted (Denmark) has shifted away from oil and gas extraction to power generation: the share of fossil fuels in their generation is 14% with 86% being renewable
- However, the share of investments into low carbon technologies (R&D and R&D&D) is still low,

<5% of total energy sector investments (IEA, 2020)

https://h2.live/en/h2mobility

https://www.bloomberg.com/news/articles/2018-11-28/oil-giant-exxon-turns-to-wind-solar-for-home-state-operations https://www.equinor.com/en/news/hywindscotland.html https://www.power-technology.com/features/orsteds-wind-power-pivot-story-far/

Related research

Exhaustible resource theory

- Harold Hotelling. The economics of exhaustible resources. Journal of Polit- ical Economy, 39(2):137–175, April 1931.
- Kenneth J Arrow and Sheldon Chang. Optimal pricing, use, and exploration of uncertain natural resource stocks. Journal of Environmental Economics and Management, 9(1):1–10, March 1982.
- Anthony J. Venables. Depletion and development: Natural resource supply with endogenous field opening. Journal of the Association of Environmental and Resource Economists, 1(3):313–336, September 2014.
- Shantayanan Devarajan and Anthony C. Fisher. Hotelling's "economics of exhaustible resources": Fifty years later. Journal of Economic Literature, 19(1):65–73, 1981.

Project Financing

- Jianjun Miao. Optimal capital structure and industry dynamics. The Journal of Finance, 60(6):2621–2659, November 2005.
- James R. Brown, Steven M. Fazzari, and Bruce C. Petersen. Financing innovation and growth: Cash flow, external equity, and the 1990s r&d boom. The Journal of Finance, 64(1):151–185, January 2009.

Stranded resource problem

- Partha Dasgupta and Joseph Stiglitz. Resource depletion under technological uncertainty. Econometrica, pages 85–104, 1981.
- R. Davison. Optimal depletion of an exhaustible resource with research and development towards an alternative technology. The Review of Economic Studies, 45(2):355, June 1978.

Framework

- A rational risk-neutral firm maximizes its **value**, which consists of:
 - I. Net profit or assets-at-hand
 - II. Value of growth assets (liquidation or future profits) that are determined by:
 - A. Future prices
 - B. Regulation changes
 - C. Technologies changes
- A firm chooses from a set of available projects, characterised by:
 - Varying productivity and profitability
 - Production potential decreasing with investments (exhaustibility)
 - The same output price, e.g. electricity price, price of 100 km ride, etc.

Model and Main Assumptions

• We distinguish projects with respect to technology:

Project	Resource	Technology	Cost of capital	Productivity	Constrained	
Established	Old	Old	Highest	Highest	Yes	
Transition	Old	New	Medium	Medium		
Alternative	New	New	Lowest	Lowest	No	

• Number of established and transitional projects is **limited** by resource availability

ТШТ

Model set-up

• Consider a rational value (V_t) maximizing firm:

$$V_t = \pi_t + A_t \xrightarrow{\{k_t^n\}_{n \in L_m, L_a}} max,$$

 k_t^n is the investments in a project *n* in period *t*

Total profit is given by:

$$\pi_t = \sum_{n \in \{e,t,a\}} q_t^n k_t^n p_t - r_t^n k_t^n,$$

where q_t^n - productivity or output per unit of capital invested

Growth assets:

$$A_t^n = \gamma_t^n [(\alpha^n \bar{Q}_t^n - \alpha^n q_t^n k_t^n + \beta^n \cdot k_t^n \bar{Q}_t^n - \beta^n q_t^n (k_t^n)^2) \hat{p}_{t+1} - \hat{r}_{t+1}^n k_{t+1}^n],$$

were technology improvements parameters: α - industry wide; β - learning-by-doing

Sofia A. Berdysheva, 2021

ТШП

Constraints

Budget is constrained:

$$\delta_t^e k_t^e + \delta_t^t k_t^t + \delta_t^a k_t^a = K_t \le \pi_{t-1} \cdot F,$$

where $\delta_t^n = q_t^n / (q_t^e + q_t^t + q_t^a)$ is productivity normalisation; and *F* is external financing parameter

Capacity is constraint:

$$\bar{K}_t^{l_m} - k_t^e - \omega_t k_t^t \ge 0,$$

where ω_t represents resource use advantage of transitional projects

Optimization

• The following optimizational problem were solved:

$$L_{t} = \sum_{n \in \{e,t,a\}} (\pi_{t}^{n} + A_{t}^{n}) + \mu_{t}(\pi_{t-1} \cdot F - K_{t}) + \lambda_{t}^{m}(\bar{K}_{t}^{m} - k_{t}^{e} - \omega k_{t}^{t}) + \mu_{t}(\pi_{t-1} \cdot F - K_{t})$$

• The following cases are possible:

Case	λ_t^m	μ_t	Interpretation
1	$\neq 0$	0	A company is not limited in finances
2	0	$\neq 0$	Unlimited amount of projects that are related to established/ transitional business
3	0	0	A company is not limited in both: finances and available projects that are related to the established/transitional business
4	$\neq 0$	$\neq 0$	A company is limited in both: finances and available projects that are related to the established/transitional business

ТЛП

100

95

75

65 60 55 **Fotal Firm's**

Results

When characteristics of all projects are the same, a firm is indifferent between available projects

When productivies start to change across the projects, a firm would change the mix of projects in its portfolio $(q_t^e = q_t^t > q_t^a)$

k^a,%

(b)

When productivity changes even further, a firm would still invest in all of the available projects $(q_t^e > q_t^t > q_t^a)$

ТЛП

Results

Different discount factors influence on the mix of projects in a company's portfolio ($\gamma_t^e = \gamma_t^t > \gamma_t^a$) Further changes may cause the abandonment of projects in established group ($\gamma_t^e > \gamma_t^t > \gamma_t^a$)

Variations in discount factors may be compensated by different productivities, leading to equal investments in every type of projects

k^a,%

75

65 60 **Fotal Firm's**

(f)

ТШТ

Summary conclusions

- 1. Firms varies with respect to:
 - Expectations on future changes in regulation
 - Expectations on the future cost of capital
 - Current level of technology
 - The speed of learning
- 2. A firm's expectations on the future together with its current level of technology rules a firm's transition
- 3. Firms should develop its transitional strategy based on their expectations

ТШП

Questions?

Types of investments

Investment and strategic responses to energy transitions	by selected companies	(illustrative, based on 2015-19 activity)
	,	(

Company	Enhancing traditional oil and gas operations			Deploying CCUS		Supplying liquids and gases for energy transitions		Transitioning from fuel to "energy companies"			
	Reducing methane emissions	Reducing CO ₂ emissions	Sourcing renewable power	For centralised emissions	For EOR	Low- carbon gases	Advanced biofuels	Solar PV and wind generation	Other power generation	Electricity distribution/retail	Electrified services / efficiency
BP	•	•				•		•			•
Chevron	•		•	•	\bullet		•		0	0	
Eni	•		•				•	•	•	•	
ExxonMobil	•		•	•				0	0	0	0
Shell	•	•	•	•		•		•	•	•	•
Total	•	•	•			•	•	•	•	•	•
CNPC		0			•			•	0	0	0
Equinor	•	•	•	•				•	0		
Petrobras			•	•	•	•			•		0
Repsol	•	•			•			•	•	•	

IEA (2020), "The Oil and Gas Industry in Energy Transitions", IEA, Paris https://www.iea.org/reports/the-oil-and-gas-industry-in-energy-transitions

Model's parameters

- Exogenous
 - Price scenarios
 - Interest rates
 - Taxes rates
 - Initial value for profit
 - Total amount of available projects
 - Productivity per project
 - Industries innovations
 - Firm's pace of improvement

- Endogenous
 - Investments into each project type at each time step
 - Firm's value at each step