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ONSHORE WIND ENERGY IN GERMANY

• Since 2017, capacities and feed-in premiums
(FIPs) for renewable energy source (RES) plants
determined in auctions

• Onshore wind energy as capacity-wise largest
renewable energy technology

• Imbalanced distribution of capacity:

• 58% Northern Germany

• 32 % Middle Germany

• 10% Southern Germany

 High cost for transmission line investment and
redispatch (€ 1.5 bn in 2017)

 System optimal allocation with estimated
savings of € 2.6 bn p.a. (Grimm et al. 2017)

Awarded capacity in German 
onshore wind auctions
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ONSHORE WIND AUCTIONS IN GERMANY

• 4 auctions per year (+ special tenders)

• Two types of bidders: institutional and BEG

• Pay-as-bid (institutional) and uniform price (BEG) 
sealed-bid auction

• Energy-related remuneration (capacity is 
tendered, electricity is remunerated)

• Sliding FIP in ct/kWh for 20 years

Sliding
FIP

Market 
price

Ask
price

Reference yield model (REM)

• Definition of reference site

• Comparison of expected electricity production at actual and reference site  site quality

• FIP adjusted according to site quality

 Disregards load proximity, network congestions, redispatch etc. 

 Inefficient allocation and remuneration
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RESEARCH QUESTIONS

 Imbalanced capacity distribution (North vs. South)

 REM sets inefficient incentives

 System optimal capacity allocation can generate welfare gains up to € 2.6 bn p.a.
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RESEARCH QUESTIONS

1

2

Can minor adjustments to the existing auction design lead to an improved regional 
distribution of generation capacity?

How do these affect the resulting allocation, remuneration (FIPs) and bidder 
diversity?

 Imbalanced capacity distribution (North vs. South)

 REM sets inefficient incentives

 System optimal capacity allocation can generate welfare gains up to € 2.6 bn p.a.
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RESEARCH QUESTIONS

1

2

Can minor adjustments to the existing auction design lead to an improved regional 
distribution of generation capacity?

How do these affect the resulting allocation, remuneration (FIPs) and bidder 
diversity?

 Imbalanced capacity distribution (North vs. South)

 REM sets inefficient incentives

 System optimal capacity allocation can generate welfare gains up to € 2.6 bn p.a.

 Simulate different auction designs 

 Compare resulting allocation quality, remuneration and bidder diversity
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ANALYSED AUCTION DESIGNS

National - benchmark

● Four auctions p.a.

● Bids contain ask price bj and capacity yj for project j

● Bids sorted in ascending order by ask price bj

● Bids accepted until tendered capacity D is reached

● Winning institutional bidders receive their ask price 
per kWh (pay-as-bid)

● Winning BEG receive remuneration per kWh of 
highest accepted bid (uniform price)

National REM – Status quo

● Like National

+ Bids placed according to REM for reference site

+ Remuneration per kWh adjusted according to relative 
site quality

Regional

● One auction p.a. in each German state

● Simultaneous

● System-optimal capacity according to Grimm et al. 
(2017) tendered in each state

● Within each region auction design like National

Combinatorial 

● One auction p.a.

● Allows package bids

● BEG are local, only place bids in their region

● System-optimal target capacities in each state 
according to Grimm et al. (2017)

● Bids awarded such that allocation is as efficient and 
subsidy-minimising as possible
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● Numerical experiment analysing one 

year

● National, National REM, Regional, 

Combinatorial auction design

● Compare w.r.t. allocation of 

generation capacity, remuneration 

and bidder diversity

DATA AND EXPERIMENTAL DESIGN

● Installed and planned onshore wind capacity 

(Deutsche WindGuard, 2018; Grimm et al. 

2017, ÜNB, 2017)

● Regional differences in site quality

(Bundesverband WindEnergie, 2012)

● Spatially differentiated plant configurations and 

investment costs for wind power plants 

(Prognos, 2013)

● Hourly wind power generation in kWh/kW 

(Prognos, 2016)

● Reference yield per installed kW (FGW, 2017)



11

AUCTION MODEL

 Submit: ask price (𝑏𝑗), capacity (𝑦𝑗), site quality factor (𝑞𝑗)

National, National REM, Regional

1. Sort bids ascending by 𝑏𝑗
2. Assign bids to winning set 𝑊 until σ𝑗∈𝑊 𝑦𝑗 ≥ 𝐷 (tendered capacity)

3a. Institutional bidders receive FIP 𝑝𝑗 = 𝑏𝑗 𝑞𝑗
3b. BEG bidders receive FIP 𝑝𝑗 = max 𝑏𝑗𝑞𝑗 , 𝑗 ∈ 𝑊
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AUCTION MODEL

Pricing Problem
min remuneration / FIP payments
s.t. winner‘s remuneration ≥ winner‘s cost (individual rationality)
s.t. loser‘s potential remuneration < loser‘s cost (no envy)
s.t. FIP ≥ 0

Allocation Problem
min weighted unit cost
s.t. winning capacity ≥ tendered capacity (demand constraint)
s.t. every project wins only once (supply constraint)

 Submit: ask price (𝑏𝑗), capacity (𝑦𝑗), site quality factor (𝑞𝑗)

National, National REM, Regional

1. Sort bids ascending by 𝑏𝑗
2. Assign bids to winning set 𝑊 until σ𝑗∈𝑊 𝑦𝑗 ≥ 𝐷 (tendered capacity)

3a. Institutional bidders receive FIP 𝑝𝑗 = 𝑏𝑗 𝑞𝑗
3b. BEG bidders receive FIP 𝑝𝑗 = max 𝑏𝑗𝑞𝑗 , 𝑗 ∈ 𝑊

Combinatorial
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EXPERIMENTAL DESIGN

Parameter Value

Institutional bidders 120 with 0-4 projects per auction, 0-16 p.a.

BEG 6 per state per auction, 384 p.a.

Number of projects Proportional to state size with maximum 100
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EXPERIMENTAL DESIGN

Parameter Value

Institutional bidders 120 with 0-4 projects per auction, 0-16 p.a.

BEG 6 per state per auction, 384 p.a.

Number of projects Proportional to state size with maximum 100

Treatment Variable Value

Auction Design {National, National REM, Regional, Combinatorial} 

Synergy concept {regional, cross-regional, national}

Synergy Level {0,0.1,..,0.5}

Evaluation Metrics Value

ҧ𝑝 in Τ𝑐𝑡 𝑘𝑊ℎ Average remuneration

𝛿 in % Allocative quality, i.e. share of capacity allocated to regions
with capacity expansion in system-optimal case

𝜂 in % Bidder diversity, i.e. share of capacity won by BEG
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RESULTS
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RESULTS

Cross-Regional, 𝜆 = 0.2
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RESULTS
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● Current auction design leads to inefficient allocation 

● Combinatorial auction design

● Bidders can leverage synergies and avoid exposure risk

● Implements optimal allocation with minimal surplus cost

● Maintains incentives to search and bid on the most efficient sites

● Strategically simpler than having to bid in a sequence of auctions

 candidate design for RES auctions

● Limitations

● Bidder diversity can be a policy goal  synergies increase competitive advantage of 

institutional bidders  additional constraints

● Not effective as long as legislative hurdles (e.g. 10H rule) and judicial proceedings limit the 

attractiveness of participation

CONCLUSION



Thank you for your attention!

Sandra Kretschmer

sandra.kretschmer@fau.de
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RESULTS - SYNERGIES

*e.g. 0.1

*
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DISTRIBUTION OF AWARDED CAPACITY IN 2018 AND CAPACITY EXPANSION 
PATHS BY STATE AND ALLOCATION

State 2018 NEP MaxW

Schleswig-Holstein (SH) 7.7 % 10.2 % 0 %

Mecklenburg-West Pomerania (MV) 8.8 % 16.6 % 7.8 %

Hamburg (HH) 0 % 0 % 0 %

Bremen (HB) 0.2 % 0.1 % 0 %

Lower Saxony (NI) 12.1 % 19.0 % 0 %

Saxony-Anhalt (ST) 6.2 % 8.8 % 0 %

Brandenburg (BB) 16.9 % 5.4 % 0 %

Berlin (BE) 0 % 0 % 0.5 %

North Rhine-Westphalia (NW) 13.9 % 4.9 % 11.5 %

Saxony (SN) 1.3 % 8.1 % 4.9 %

Thuringia (TH) 3.3 % 9.2 % 0 %

Hesse (HE) 8.0 % 2.8 % 16.2 %

Rhineland-Palatinate (RP) 10.2 % 7.2 % 6.7 %

Saarland (SL) 0.3 % 0 % 3.5 %

Bavaria (BY) 5.2 % 0 % 35.2 %

Baden-Wuerttemberg (BW) 6.7 % 7.7 % 13.7 %

Sum 100 % 100 % 100 %

Source: Own elaboration based on data from Deutsche WindGuard (2018), Grimm et al. (2017)
and ÜNB (2017).
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Category Investment 
costs [€/kW]

Plant configuration Reference yield 
[MWh/MW]

2
0

1
8

Onshore Wind 1

(HB, HH, MV, SH)
1,355

Hub height 95 m, 3 MW, 

100 m rotor diameter
2,321

Onshore Wind 2

(BB, BE, NI, NW, ST)
1,456

Hub height 105 m, 3 MW, 

100 m rotor diameter
2,376

Onshore Wind 3

(BY, HE, RP, SL, SN, TH)
1,630

Hub height 120 m, 2.5 MW, 

110 m rotor diameter
3,915

Onshore Wind 4

(BW)
1,732

Hub height 130 m, 2.5 MW, 

115 m rotor diameter
4,065

Source: Own elaboration based on Prognos (2013) and FGW (2017).

INVESTMENT COSTS FOR WIND POWER PLANTS
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ASSUMPTIONS

Wind parks (projects j) 

• Capacity 𝑦𝑗 ∈ [750kW, 25MW]

• Wind efficiency 𝑤𝑗 in kWh/kW

• Costs 𝑐𝑗 in ct/kWh

Bidders (𝑖)

• Set of projects 𝑃𝑖
• Institutional bidders (|𝑃𝑖| ≥ 1)

• BEG bidders (|𝑃𝑖| = 1)

Synergy concept 

• Regional synergies (e.g. BY)

• Cross-regional synergies (e.g. BY and BW)

• National synergies (e.g. BY and BE)

• Synergy levels ∈ [0, 0.5]
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ONSHORE WIND ENERGY IN GERMANY

Auction design element Implementation

Product Installed capacity (MW)

Pricing rule Pay-as-bid and uniform price sealed-bid auction (for BEG)

Type Price-only multi-item auction

Auctioned volume 2800 MW per year, i.e. 700-1000 MW per round

Remuneration scheme Energy-related remuneration (capacity is tendered, electricity is remunerated)

Price ceiling 7 ct/kWh in 2017; from 2018: average of highest accepted bid in the last three rounds, increased by 8%

(6.3 ct/kWh in 2018)

Prequalification requirements Bid bond of 30 €/kW of installed capacity (for BEG: 15 €/kW, secondary bid bond of 15 €/kW upon

winning)

BImSchG-approval 3 weeks before auction

Frequency 3 to 4 auctions a year (every 2-4 months)

Concentration rules Min. 750kW

Max. 6 bids for max. 18 MW in total for BEG

Penalties 10 €/kW after 24 (48)

20 €/kW after 26 (50) months of delay (for BEG)

30 €/kW after 28 (52)

Form of support Sliding FIP per kWh

Support duration 20 years
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RESULTS
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RELATED LITERATURE

RES auction design

• Auctions can reduce remuneration and avoid overcompensation (de Vos & Klessmann, 2014; del
Río & Linares, 2014; Mora et al., 2017)

• Large consent on RES auction design elements (Cramton, 2010; IRENA and CEM, 2015;
Klemperer, 2004; Maurer & Barroso, 2011; del Río et al., 2015)

• Trade-off between cost-efficient support levels, reaching capacity expansion targets and actor
diversity (del Río, 2017; Grashof, 2013; Hauser et al., 2014; Hauser & Kochems, 2014)



31

RELATED LITERATURE

RES auction design

• Auctions can reduce remuneration and avoid overcompensation (de Vos & Klessmann, 2014; del
Río & Linares, 2014; Mora et al., 2017)

• Large consent on RES auction design elements (Cramton, 2010; IRENA and CEM, 2015;
Klemperer, 2004; Maurer & Barroso, 2011; del Río et al., 2015)

• Trade-off between cost-efficient support levels, reaching capacity expansion targets and actor
diversity (del Río, 2017; Grashof, 2013; Hauser et al., 2014; Hauser & Kochems, 2014)

System-optimal capacity allocation

• Decentralised allocation of generation capacity that accounts for existing network infrastructure
and potentially arising network constraints (Benz et al., 2015; Grimm et al., 2017)

• Can reduce prospective network congestion and the need for transmission line expansion (Benz
et al., 2015; Grimm et al., 2017, 2018, 2019)

• RES well suited for distributed generation (Ackermann et al. 2001, Amado et al. 2017)



32

RELATED LITERATURE

RES auction design

• Auctions can reduce remuneration and avoid overcompensation (de Vos & Klessmann, 2014; del
Río & Linares, 2014; Mora et al., 2017)

• Large consent on RES auction design elements (Cramton, 2010; IRENA and CEM, 2015;
Klemperer, 2004; Maurer & Barroso, 2011; del Río et al., 2015)

• Trade-off between cost-efficient support levels, reaching capacity expansion targets and actor
diversity (del Río, 2017; Grashof, 2013; Hauser et al., 2014; Hauser & Kochems, 2014)

System-optimal capacity allocation

• Decentralised allocation of generation capacity that accounts for existing network infrastructure
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• Can reduce prospective network congestion and the need for transmission line expansion (Benz
et al., 2015; Grimm et al., 2017, 2018, 2019)

• RES well suited for distributed generation (Ackermann et al. 2001, Amado et al. 2017)

 Combine RES auction design & system-optimal allocation in numerical experiments
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