### **Electricity customers are changing.**

#### The Sydney Morning Herald

Too much of a good thing: Solar power surge is flooding the grid

By Cole Latimer

#### **Bloomberg**

# Australians Love Rooftop Panels. That's a Problem for Big Solar

By James Thornhill

December 16, 2019, 6:00 AM GMT+11 Updated on December 16, 2019, 10:00 PM GMT+11

- ▶ About one in four Australian households has solar panels
- Surge in residential uptake set to hurt profits of big plants

#### **W**NEWS

The rise of solar power is jeopardising the WA energy grid, and it's a lesson for all of Australia

By Daniel Mercer







What could happen with household batteries?

# Outline.

- Introduction
- Research question
- Context of the case study
- Methodology
- Results
- Conclusions



#### Derivation of customer value.

#### Retail usage charges/kWh:







### The value shifts with PV-battery prosumage.

PV and battery investments are intertwined



- Batteries revalue excess PV generation (minus losses)
- Prosumage adoption becomes a combined consideration of PV and battery capacity
- Interaction with FiT eligibility
- FiT incentives are "flipped"





\* Assuming batteries only operate to maximise self-consumption

## Changing shape of residual network demand.



- 1. Batteries incentivise additional PV capacity
- 2. Declining minimum demand
- 3. Declining late-afternoon peak
- 4. Emerging residual morning peak
- 5. Increased morning to midday down ramping



## Changing shape of residual network demand.



6. Shifting into winter dominant demand





#### Research question.

With costs of battery systems declining and electricity prices rising, what impacts could household PV-battery adoption have on the optimal least-cost portfolio of the power sector?





### The case study.

Western Australia's South-West Interconnected System (SWIS) Network

- Islanded network, currently unable to export elsewhere or curtail household PV
- Significant wind and solar resources
- Around 18 TWh of annual energy consumption (and 4.4 GW peak)
  with households consuming around 30%
- Over 1.5 GW of rooftop PV installed (2021) and growing
- Instantaneous contribution to underlying demand recorded above 60% (13 March 2021)
- In 2030 it is estimated that 50% of households will have PV installed





### The research setup.





#### Data sources.



| Input Parameters                                          | Value                                                            | Source                                               |
|-----------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|
| Household underlying demand and generation (heterogenous) | 261 Sydney homes via half-hourly <i>gross</i> meter data 2012-13 | (Ausgrid)                                            |
| Residential/utility PV cost projection curves             | Scaled by 0.78                                                   | (Solar Choice,<br>GenCost 2018)                      |
| Residential/utility battery cost projection curves        | Scaled by 0.73                                                   | (Solar Choice,<br>Schmidt et al. 2017)               |
| Retail usage charge projections                           | 29c/kWh +4%pa                                                    | (Synergy, ABS)                                       |
| Underlying network demand                                 | SWIS operational demand 2012-13                                  | (AEMO)                                               |
| Number of investing households                            | 500,000                                                          | Forecasted number of PV installations in 2030 (AEMO) |
| Other technology costs                                    | Conventional, wind, hydrogen, biomass                            | (GenCost 2018)                                       |
| Wind resource                                             | Time-series                                                      | (AEMO)                                               |
| Solar resource                                            | Time-series average of household insolation data                 | (Ausgrid)                                            |



#### The scenarios investigated.

We compare scenarios with varying FiT and RES shares to a counterfactual setting without prosumage.

- FiTs at 0%, 25%, 50% of retail usage charge
- RES share (constrained) at 39%, 49%, 59%



### Various degrees of prosumage.

- 261 real household load and PV generation profiles
- Path dependency evaluated through a brownfield investment simulation
- Investment opportunities run annually using a 10-year financial horizon
- The PV-only, PV-battery, battery-only configuration with the highest NPV is selected, but only after a perceived risk check





2030

## Various degrees of prosumage.

- Higher FiTs discourage battery adoption and keeps households at the eligibility limit (5 kW<sub>P</sub>)
- Lowering FiTs encourages battery adoption
- Larger consumption households may exceed FiT eligibility limit







Figure 23 Installed behind-the-meter PV capacity, 2018-19 to 2029-30 financial years A.B



B. Historical monthly behind-the-meter PV capacity data is provided in the 2020 WEM ESOO Data Register. Source: CSIRO and GEM



Household Battery Energy

### **Capacity impacts.**

#### Reference (counterfactual) scenario

No PV battery investing households

- More wind than utility PV capacity
- Increased utility battery capacity as RES share rises





#### **Capacity impacts.**

#### **PV-only** FiT<sub>50</sub> scenario

Average 5 kW<sub>P</sub> with no batteries

- Displacement in both utility PV and wind capacity
- Wind capacity recovers as RES increases
- Greater utility PV capacity displacement as RES increases
- Further utility battery capacity added





### **Capacity impacts.**

#### **PVB** FiT<sub>25</sub> scenario

Average 5.3 kW<sub>P</sub> + 5.9 kWh

- Displacement in both utility PV and wind capacity
- Wind capacity recovers as RES increases
- Greater utility PV capacity displacement as RES increases
- Little effect on utility battery capacity





### **Capacity impacts.**

#### **PVB+** FiT<sub>0</sub> scenario

Average 4.7 kW<sub>P</sub> + 8.7 kWh

- Reduced displacement of utility PV capacity
- Wind capacity recovers as RES increases
- Greater utility PV capacity displacement as RES increases
- Little effect on utility battery capacity





#### Reference (counterfactual) scenario

- No PV battery investing households
- Wind is an increasingly important resource, higher capacity factor of wind means that wind contributes more to the generation mix
- Coal has greatest reduction
- OCGT, CCGT generally unaffected





PV Utility Battery Discharge 💹 Utility Battery Cha

Wind

8

ck Coal

## **Generation impacts.**





### Wholesale price impacts.

Considering PVB FiT<sub>25</sub> and 49% RES share:

- Late-afternoon peak prices fall
- Mid-morning prices rise
- Wholesale prices for non-prosumage also falls slightly
- Cost of supply to C&I rises slightly





Prices and grid demand of households



### Overall system cost effects.

 Higher PV battery investment costs for customers leads to sub-optimal allocation of capital across the power sector







#### Conclusions.

- Utility PV generally substituted by household PV capacity but less so as additional household batteries are installed
- Wind power is less affected especially in scenarios with higher shares of renewables
- Utility battery capacities are hardly substituted with household batteries operating to maximise self-consumption
- Slight decrease in wholesale prices faced by non-prosumage households less so with prosumage households, while other consumers are slightly increased
- Potential system benefits from more system oriented household battery operations that have near-zero marginal costs (from the consumer perspective)

