

Analyzing cross-border balancing capacity coordination in a high-RES power system

Using the open-source energy system model generator SpineOpt

Maren Ihlemann, KU Leuven

Case study on Cross-Border Integration

- Day-ahead market with joint energy & balancing capacity market clearing
- Scope: 2030 scenario for CWE with 5 countries (BE, DE, FR, LU, NL)

Realization in SpineOpt.jl

https://github.com/Spine-project/SpineOpt.jl

- High level of technical detail required
 - Clustered unit commitment formulation
 - Ramping and reserve constraints
- 1-year optimization (MILP)
 - Rolling horizon optimization
- Different market scenarios for coordination
 - Realized through SpineOpt's generic constraints
 - Database-driven differentiation between market designs

Balancing Capacity **Exchange** ×→

- Exchange impacts "must-run" constraints
 - Spinning reserves imported (aFRR!)
 - Relaxation of "must-run" requirements
- Allows more efficient DA scheduling
 - Low-flexibility, low-OPEX units operate closer to maximum output
 - Avoiding start-ups of high-flexibility, high-OPEX units
- Results in moderate cost savings
 - Order of magnitude ~25 M€/year

Energy production in France EX NO 8 FR Storage FR Nuclear 6 4 ×10⁴ CCGT FR Wind or FR Wind off FR Solar 2 0 20 hours 10 15 20 10 15

Balancing Capacity Sharing X+<

- Sharing reduces balancing capacity need
 - Benefits of joint sizing exercise
 - Further relaxation of technical constraints
- Allows even more efficient DA scheduling
 - Schedule even closer to cost-optimal DA electricity schedule
- Results in moderate cost savings
 - Order of magnitude ~155 M€/year
 - Biggest benefits not yet captured?
 - Results suggest that the total amount of high-flex capacity could be reduced

