

EMPIRICAL ECONOMIC

DEVELOPING AND MODELING POLICIES TO REDUCE REBOUND EFFECTS

1st IAEE Online Conference, June 7th 2021

Christian Lutz, Lara Ahmann, Maximilian Banning

Bundesministerium für Bilduna und Forschung

WWW.GWS-OS.COM / © GWS 2021

- 1. Background and aim of ReCap
- 2. Approach for modeling rebounds with PANTA RHEI
- 3. Rebound effects in German industry
- 4. Policy scenarios and impacts
- 5. Conclusions and outlook

1. Research question

- ReCap project (<u>https://www.macro-rebounds.org/english/</u>)
 - ⇒ Reconsidering the Role of Energy and Resource Productivity for Economic Growth, and Developing Policy Options for Capping Macro-Level Rebound Effects
 - ⇒ Three year project funded by BMBF as part of FONA
 - ⇒ Partners: IÖW Berlin (lead), University of Göttingen
- Despite various policy measures (such as National Energy Efficiency Action Plans) energy consumption is declining less than expected
 - ⇒ Have rebound effects been neglected?
 - ⇒ What are magnitude and drivers of rebounds?
 - → How to model and address them?

Rebound definition in ReCap

Only part of rebound effects considered in PANTA RHEI

Context of analysis

- Ambitious target to reduce energy use by 30% against 2008 until 2030
- Period under consideration: 2020-2030
- Analysis of rebound effects in German industry
- Growing number of research papers on "rebound"
- Various studies exist for other countries that use macroeconomic models to calculate rebounds
- Use of the PANTA RHEI model, which is also applied for socioeconomic impact assessment in the German NECP process

2. Model structure

- Mapping of effects in the macroeconometric model PANTA RHEI
- Dynamic input-output model, myopic expectations
- does not follow any optimization algorithm
- Focus is on meso and macro level
- More information in Lutz et al. 2021, accepted in Economic Systems Research

Model adjustment

- Final energy consumption

 (E_i) of every industry is
 modeled as dependent of
 respective production (Y_i),
 relative prices (^{PE_i}/_{PY_i}) and
 trends
- Estimates based on the AFiD panel by the project partner Uni Göttingen (Panel of Cost Structure Survey for years 2003-2014, all German manuf. Companies with more than 20 employees)

$$E_{i} = \hat{\beta}_{0,i} + \hat{\beta}_{1,i} * (1 - \delta_{i}) * Y_{i} + \hat{\beta}_{2,i} * \frac{PE_{i}}{PY_{i}}$$

with δ_i : Efficiency improvement in industry *i*

Industry	Production elasticity	Price elasticity
Quarrying, other mining	0.57	-0.04
Food and tobacco	0.25	-0.06
Paper	0.51	-0.07
Basic chemicals	0.59	-
Other chemical industry	0.23	-
Rubber and plastic products	0.31	-0.07
Glass and ceramics	0.37	-0.25
Mineral processing	0.87	-0.36
Manufacture of basic metals	0.33	-0.35
Non-ferrous metals, foundries	0.50	-0.38
Metal processing	0.14	-0.09
Manufacture of machinery	0.44	-0.21
Manufacture of transp. equipment	0.31	-0.36
Other segments	0.65	-0.14

Rebound effects due to efficiency increase

- Efficiency increase takes place in the form of relative savings in final energy consumption in industry
- Determination of rebounds: potential versus actually realized reduction in energy consumption as a percentage.

$$\theta_{i} = 1 - \left(\frac{\frac{E_{i}^{actual}}{E_{i}^{reference}} - 1}{\frac{E_{i}^{targeted}}{E_{i}^{targeted}} - 1} \right)$$

Targeted (potential) energy consumption must be known for quantification: possible for efficiency improvement, difficult regarding policy measures

© 2021 GWS mbH

3. Rebound effects in industry in 2021/2030

- High rebounds in minerals, metals, transport equipment
- Economy-wide rebound larger than in industry
- Level of rebound effects depends, among other things, on price elasticities of energy demand

 \odot 2021 GWS mbH

Macroeconomic rebound

Final energy consumption until 2030

Targeted reduction in industry: 7.4%; realized: 6.5%

4. Scenarios: Accompanying policy measures

1) Reinvestment requirement

50% of the savings are used by companies for further efficiency measures

2) CO₂ pricing

Pricing of up to 180€/t CO₂eq in 2030.

3) Reimbursements

Reduction of the EEG levy

4) Tax reform

 Higher taxation of the energy factor (50% higher tax rates), lower taxation of the labor factor

5) Reduction of working hours

Reduction by 10% with half wage compensation

Combined effects on energy use in 2030

- Efficiency programme in industry and carbon pricing (in non-ETS) contribute most to energy savings
- Reduction of EEG levy will increase use of electricity

Effects on other SD indicators in 2030

- Reinvestment goes in the wanted direction for all indicators
- Carbon pricing (without recycling) has negative economic effects and reduces CO₂ emissions
- Reduction of EEG levy: Trade-off between emission increase and positive economic effects

© 2021 GWS mbH

Effects on energy consumption

Tax reform

- Reduction of energy use in industry
- No (big) macroeconomic effects
- Small mixed effects on energy use in industry
- Larger reduction in economy-wide energy use
- Small negative effect on GDP

Effects on energy consumption

Carbon pricing

- Only effective in non-ETS sector/industries
- Larger reduction in total energy use
- Negative GDP effect (without revenue recycling)

Reduction of EEG levy

- Lower electricity prices In industries without exemptions
- Increase in energy (electricity use)
- Positive GDP effect

5. Conclusions and outlook

- ► No one-fits-all measure: **Policy-mix** needed
 - ⇒ Price instruments are important
- Modelling should also account for rebounds
 - ⇒ Include potential rebounds in modelling of policy instruments
 - ⇒ Consider global level
- Other impacts/SDGs also matter: employment, prices, GDP
 - ⇒ How are they related to energy consumption/energy prices?
- Policy
 - ⇒ Acceptance is important
 - ⇒ Higher efficiency targets to consider rebounds
 - Systemic view: Transformation necessary because of technological limits of efficiency gains
 - ⇒ Renewables and efficiency needed for GHG neutrality

Thank you for your attention.

Christian Lutz T +49 (0) 541 40933 - 120 E lutz @ gws-os.com Head of division Energy & Climate

References:

- Lutz, C.; Banning, M.; Ahmann, L.; Flaute, M. Energy efficiency and rebound effects in German industry evidence from macroeconometric modeling. Econ. Syst. Res. 2021, accepted for publication <u>https://doi.org/10.1080/09535314.2021.1937953</u>.
- Lange, S., Kern, F., Peuckert, J., Santarius, T. (2021): The Jevons paradox unravelled: A multi-level typology of rebound effects and mechanisms, Energy Research & Social Science, 74, 2021, <u>https://doi.org/10.1016/j.erss.2021.101982</u>.
- Colmenares, G., Löschel, A., Madlener, R. (2020): The rebound effect representation in climate and energy models, Environmental Research Letters 15 123010 10.1088/1748-9326/abc214.
- Brockway, P. E., Sorrell, S., Semieniuk, G., Heun, M. K., Court, V. (2021): Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications, in Renewable and Sustainable Energy Reviews 141 110781 10.1016/j.rser.2021.110781.

How to model rebounds in PANTA RHEI?

