DEVELOPING AND MODELING POLICIES TO REDUCE REBOUND EFFECTS

1st IAEE Online Conference, June 7th 2021

Christian Lutz, Lara Ahmann, Maximilian Banning
Contents

1. Background and aim of ReCap

2. Approach for modeling rebounds with PANTA RHEI

3. Rebound effects in German industry

4. Policy scenarios and impacts

5. Conclusions and outlook
1. Research question

- ReCap project (https://www.macro-rebounds.org/english/)
 - Reconsidering the Role of Energy and Resource Productivity for Economic Growth, and Developing Policy Options for Capping Macro-Level Rebound Effects
 - Three year project funded by BMBF as part of FONA
 - Partners: IÖW Berlin (lead), University of Göttingen

- Despite various policy measures (such as National Energy Efficiency Action Plans) energy consumption is declining less than expected
 - Have rebound effects been neglected?
 - What are magnitude and drivers of rebounds?
 - How to model and address them?
Rebound definition in ReCap

- Only part of rebound effects considered in PANTA RHEI

Macroeconomic rebound effects
- International: international trade and relocation, international energy markets
- National: general market price of energy, macroeconomic multiplier

Meso-economic rebound effects
- Single energy market: energy price in one energy market
- Intermediate goods and services: output, lower prices and higher sales
- Final goods and services: lower prices and higher sales, income, substitution

Microeconomic rebound effects
- Firms: direct, output, substitution, indirect
- Households: direct, output, substitution, indirect
Context of analysis

- Ambitious target to reduce energy use by 30% against 2008 until 2030
- Period under consideration: 2020-2030
- Analysis of rebound effects in German industry
- Growing number of research papers on “rebound”
- Various studies exist for other countries that use macroeconomic models to calculate rebounds
- Use of the PANTA RHEI model, which is also applied for socioeconomic impact assessment in the German NECP process
2. Model structure

► Mapping of effects in the macroeconometric model PANTA RHEI
► Dynamic input-output model, myopic expectations
► does not follow any optimization algorithm
► Focus is on meso and macro level
► More information in Lutz et al. 2021, accepted in Economic Systems Research
Model adjustment

- Final energy consumption (E_i) of every industry is modeled as dependent of respective production (Y_i), relative prices ($\frac{PE_i}{PY_i}$) and trends

\[
E_i = \hat{\beta}_{0,i} + \hat{\beta}_{1,i} \ast (1 - \delta_i) \ast Y_i + \hat{\beta}_{2,i} \ast \frac{PE_i}{PY_i}
\]

with δ_i: Efficiency improvement in industry i

<table>
<thead>
<tr>
<th>Industry</th>
<th>Production elasticity</th>
<th>Price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarrying, other mining</td>
<td>0.57</td>
<td>-0.04</td>
</tr>
<tr>
<td>Food and tobacco</td>
<td>0.25</td>
<td>-0.06</td>
</tr>
<tr>
<td>Paper</td>
<td>0.51</td>
<td>-0.07</td>
</tr>
<tr>
<td>Basic chemicals</td>
<td>0.59</td>
<td>-</td>
</tr>
<tr>
<td>Other chemical industry</td>
<td>0.23</td>
<td>-</td>
</tr>
<tr>
<td>Rubber and plastic products</td>
<td>0.31</td>
<td>-0.07</td>
</tr>
<tr>
<td>Glass and ceramics</td>
<td>0.37</td>
<td>-0.25</td>
</tr>
<tr>
<td>Mineral processing</td>
<td>0.87</td>
<td>-0.36</td>
</tr>
<tr>
<td>Manufacture of basic metals</td>
<td>0.33</td>
<td>-0.35</td>
</tr>
<tr>
<td>Non-ferrous metals, foundries</td>
<td>0.50</td>
<td>-0.38</td>
</tr>
<tr>
<td>Metal processing</td>
<td>0.14</td>
<td>-0.09</td>
</tr>
<tr>
<td>Manufacture of machinery</td>
<td>0.44</td>
<td>-0.21</td>
</tr>
<tr>
<td>Manufacture of transp. equipment</td>
<td>0.31</td>
<td>-0.36</td>
</tr>
<tr>
<td>Other segments</td>
<td>0.65</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

- Estimates based on the AFiD panel by the project partner Uni Göttingen (Panel of Cost Structure Survey for years 2003-2014, all German manuf. Companies with more than 20 employees)
Rebound effects due to efficiency increase

- Efficiency increase takes place in the form of relative savings in final energy consumption in industry
- Determination of rebounds: potential versus actually realized reduction in energy consumption as a percentage.

\[
\theta_i = 1 - \left(\frac{E_{i}^{\text{actual}}}{E_{i}^{\text{reference}}} - 1 \right) \left(\frac{E_{i}^{\text{targeted}}}{E_{i}^{\text{reference}}} - 1 \right)
\]

- Targeted (potential) energy consumption must be known for quantification: possible for efficiency improvement, difficult regarding policy measures
3. Rebound effects in industry in 2021/2030

- High rebounds in minerals, metals, transport equipment
- Economy-wide rebound larger than in industry
- Level of rebound effects depends, among other things, on price elasticities of energy demand
Macroeconomic rebound

Final energy consumption until 2030

Targeted reduction in industry: 7.4%; realized: 6.5%
4. Scenarios: Accompanying policy measures

1) **Reinvestment requirement**
 - 50% of the savings are used by companies for further efficiency measures

2) **CO₂ pricing**
 - Pricing of up to 180€/t CO₂eq in 2030.

3) **Reimbursements**
 - Reduction of the EEG levy

4) **Tax reform**
 - Higher taxation of the energy factor (50% higher tax rates), lower taxation of the labor factor

5) **Reduction of working hours**
 - Reduction by 10% with half wage compensation
Combined effects on energy use in 2030

- Efficiency programme in industry and carbon pricing (in non-ETS) contribute most to energy savings
- Reduction of EEG levy will increase use of electricity
Effects on other SD indicators in 2030

- Reinvestment goes in the wanted direction for all indicators
- Carbon pricing (without recycling) has negative economic effects and reduces CO$_2$ emissions
- Reduction of EEG levy: Trade-off between emission increase and positive economic effects
Effects on energy consumption

Reinvestment

- **Reduction of energy use in industry**
- **No (big) macroeconomic effects**

Tax reform

- **Small mixed effects on energy use in industry**
- **Larger reduction in economy-wide energy use**
- **Small negative effect on GDP**
Effects on energy consumption

Carbon pricing

- Only effective in non-ETS sector/industries
- Larger reduction in total energy use
- Negative GDP effect (without revenue recycling)

Reduction of EEG levy

- Lower electricity prices in industries without exemptions
- Increase in energy (electricity use)
- Positive GDP effect
5. Conclusions and outlook

► No one-fits-all measure: **Policy-mix** needed
 ➞ Price instruments are important

► Modelling should also account for rebounds
 ➞ Include potential rebounds in modelling of policy instruments
 ➞ Consider global level

► Other impacts/SDGs also matter: employment, prices, GDP
 ➞ How are they related to energy consumption/energy prices?

► Policy
 ➞ Acceptance is important
 ➞ Higher efficiency targets to consider rebounds
 ➞ Systemic view: Transformation necessary because of technological limits of efficiency gains
 ➞ **Renewables and efficiency** needed for GHG neutrality
Thank you for your attention.

Christian Lutz
T +49 (0) 541 40933 - 120
E lutz @ gws-os.com
Head of division Energy & Climate

References:

How to model rebounds in PANTA RHEI?