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What is a good forecast?

I Suppose we want to evaluate a forecast of Xt+h

I Common practice: compare accuracy of your forecast against

no-change benchmark ≡ Xt

I Xt is optimal forecast under the random walk hypothesis
→ accuracy-improvements over NCB imply that

◦ series is predictable in general
◦ our forecast is more useful than “naive” approach

I But: this approach not informative for temporally aggregated data

◦ lower-frequency series constructed by averaging or summation
(e.g., real commodity prices, interest rates, ...)



The new benchmark

I Random walk hypothesis applies to high-frequency series

◦ aggregated data are predictable by construction (Working 1960)

◦ conventional NCB is not the optimal forecast

→ improvements over conventional NCB not informative about RWH

I New no-change benchmark:

last high-frequency observation

◦ optimal under random walk hypothesis
→ restores original interpretation of comparison with NCB
◦ ≈ 45% improvement in MSPE for monthly/quarterly averages of

daily data for 1-step-ahead prediction



Application to the real price of crude oil

I Real price of crude oil typically based on averaged data
(Kilian 2009; Baumeister & Hamilton 2019)

I Existing literature: model-based forecasts beat NCB
(Baumeister & Kilian 2012, 2014, 2015; Alquist et al. 2013; Snudden, 2018; Funk,

2018; Garratt et al., 2019)

I New no-change benchmark based on monthly closing price of oil

◦ ≈ 40% improvements in accuracy at 1-step-ahead prediction
◦ using closing prices for estimation improves traditional models
◦ but: most models do not beat the new benchmark

→ oil prices are more difficult to predict than previously thought



Intuition under the RW null hypothesis

I Forecaster’s goal is to predict Xt+h given time t information

Xt ≡
1

n

n∑
i=1

yt,i

t = month; i = day of month; n = # of days in month

I Null hypothesis: daily observations follow random walk

yt,i = yt,i−1 + εt,i , for i = 1, · · · , n

εt,i is a mean-zero, iid error term with variance σ2
ε

- What is the optimal forecast in this setting?
- What are the consequences of using Xt to evaluate forecasts?



The optimal forecast under the RWH

I Optimal forecast in MSPE terms is the conditional expectation

Et(Xt+h) = E (Xt+h|y1,1; · · · ; yt,n; Z1; · · · ; Zt)

I RWH: conditional expectation of each future daily obs

Et(yt+h,i ) = yt,n for all h > 0, i = 1, · · · , n

⇒ conditional expectation of each future average obs

Et(Xt+h) = Et(
1

n

n∑
1

yt+h,n) = yt,n

I New benchmark is the optimal forecast under the RWH:

last high-frequency observation in period t ≡ yt,n



Comparing the no-change forecasts Xt and yt,n

I What is the MSPE of yt,n relative to the conventional NCB Xt?

MSPE for conventional benchmark:

E
[
(Xt − Xt+h)

2
]
=

(
(h − 1) · n +

(n + 1) · (2n + 1)

6n
+

(n − 1) · (2n − 1)

6n

)
σ2
ε

MSPE for new benchmark:

E
[
(yt,n − Xt+h)

2
]
=

(
(h − 1) · n +

(n + 1) · (2n + 1)

6n

)
σ2
ε

I yt,n has lower MSPE than Xt under the RWH

I All forecasting gains occur at the 1-step ahead prediction

◦ forecast gain is constant, forecast error increases with h
⇒ relative improvements largest for short horizons



MSPE ratios of the two NCBs

Theoretical MSPE improvements for monthly data
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Consequences for forecast comparisons

I Conventional NCB is not the optimal forecast under the RWH

I Moreover, ∆Xt is autocorrelated (Working 1960)

Xt − Xt−1 = 1
n

[∑n
i=1 i · εt−1,i +

∑n
j=1(n + 1− j) · εt,j

]

⇒ improvements over no-change forecast Xt are expected even under
the random walk null hypothesis

⇒ improvements over no-change forecast yt,n are evidence against the
random walk null hypothesis

I Using yt,n as a benchmark

◦ maintains original spirit of comparisons with the NCB
◦ more difficult to achieve when HF observations are persistent



Application: Forecasting the real price of crude oil

I Forecast of the monthly real price of crude oil in standard setting
(Baumeister & Kilian 2012, 2014, 2015; Alquist et al. 2013)

◦ real oil price is deflated average of daily nominal prices

p̄rt =
1
n

∑n
i=1 pt,i

CPIt

◦ goal: forecast p̄rt+h given month t information

I The new benchmark: series of monthly closing prices

pr ,closingt =
pt,n
CPIt



Econometric models

1. Univariate time series models

◦ AR (log-level and percent changes )

◦ ARMA(1,1)
◦ ARFI

2. VAR models (Kilian & Murphy 2014)

◦ percent change in global crude oil production
◦ real economic activity indicator (Kilian 2009)
◦ real price of oil
◦ change in above-ground global crude oil inventories

> unrestricted least-squares estimation
> Gaussian BVAR with prior variance (Giannone, Lenza & Primiceri 2010)

3. Futures price curve

4. Equal-weight forecast combination



Implementation

Following Baumeister & Kilian (2012):

I Real-time data

I Out-of-sample forecasts with expanding window

◦ estimation period starts 1973M2
◦ out-of-sample evaluation 1992M1 - 2018M12

I All models estimated with average prices

I Criteria: MSPE ratio and directional accuracy

◦ displayed relative to conventional NCB
◦ improvements over the new NCB are in bold
◦ standard tests for inference

(Diebold & Mariano 1995, Pesaran and Timmermann 2009)



Baseline results: Real WTI prices, real-time data

Months 
Ahead

Last WTI 
Close Price BVAR(12) VAR(12) AR(12) AR(12)    

%Δ ARFI(1) ARMA(1,1) Futures 
Curve

Model 
Averaging

1 0.61*** 0.97 1.01 0.94 0.95* 0.93 0.92 1.00 0.91
3 0.89** 1.00 1.00 0.97 0.99 0.96 0.95 0.97 0.92
6 0.95** 1.05 1.04 1.00 1.04 0.99 0.95 0.96 0.95

12 0.96** 1.10 1.11 1.00 1.10 1.00 0.94 0.85** 0.94
24 0.99 1.08 1.06 1.02 1.19 1.04 0.96 0.82* 0.91

1 0.71*** 0.51 0.54** 0.52 0.49 0.52 0.53 0.47 0.49
3 0.60*** 0.53 0.54* 0.49 0.57** 0.49 0.50 0.49 0.52
6 0.56** 0.53 0.55* 0.48 0.54 0.49 0.46 0.53 0.51

12 0.59*** 0.49 0.56** 0.53 0.50 0.51 0.50 0.61*** 0.51
24 0.53 0.51 0.55 0.57 0.47 0.55 0.56 0.62*** 0.55

MSPE Ratios

 Success Ratios

Note: ***, **, and * denote significant improvement over the average no-change forecast
at the 1%, 5%, and 10% level. Bold values indicate significant improvements over the last
closing price no-change forecast at the 5 percent level.



Evolution of baseline WTI Real price forecasts: Real-time
data

Note: Dynamic, recursive, out-of-sample forecasts 1992M1–2018M12. The forecast criteria
reported include the recursive MSPE expressed as a ratio relative to the monthly average
no-change forecast. All forecast criteria are evaluated in the levels of the real price of oil.
The first 30 months are dropped to reduce starting-point effects.



Interpreting baseline results

I Large(!) forecasting gains for short forecast horizons

I Actual vs. predicted MSPE ratios (RWH for daily data)

Horizon (months) 1 3 6 12 24

Theoretical 0.54 0.88 0.95 0.97 0.99
Empirical (revised data) 0.60 0.89 0.95 0.96 0.99

I Robustness: remarkably similar results for

◦ various estimation / evaluation periods
◦ different oil price series (Brent, RAC, nominal prices)
◦ ex-post revised data, nominal price, quarterly data

I What about estimating models with closing prices?



Models estimated with last closing price

Months 
Ahead

Last WTI 
Close Price BVAR(12) VAR(12) AR(2) AR(1)      

%Δ ARFI(2)  ARMA(1,1) Last Future 
Price Curve

Model 
Averaging

1 0.61*** 0.62** 0.73* 0.57*** 0.62*** 0.57*** 0.57*** 0.60*** 0.58***
3 0.89** 0.90 0.91 0.85 0.93* 0.86 0.86 0.88** 0.82*
6 0.95** 0.98 0.97 0.89 1.04 0.89 0.90 0.92* 0.87

12 0.96** 1.05 1.06 0.90 1.15 0.90 0.91 0.84** 0.87*
24 0.99 1.06 1.06 0.95 1.48 0.95 0.97 0.80* 0.87

1 0.71*** 0.71*** 0.66*** 0.71*** 0.73*** 0.72*** 0.71*** 0.73*** 0.70***
3 0.60*** 0.58** 0.56** 0.57** 0.62*** 0.60*** 0.60*** 0.60*** 0.59***
6 0.56** 0.58** 0.58** 0.52 0.58** 0.51 0.52 0.55 0.55

12 0.59*** 0.54 0.58** 0.54 0.59** 0.51 0.53 0.63*** 0.54
24 0.53 0.51 0.57* 0.58 0.56 0.55 0.54 0.64*** 0.56

MSPE Ratios

 Success Ratios

Note: ***, **, and * denote significant improvement over the average no-change forecast
at the 1%, 5%, and 10% level. Bold values indicate significant improvements over the last
closing price no-change forecast at the 5 percent level.



Evolution of real-time closing-price WTI forecasts

Note: Dynamic, recursive, out-of-sample forecasts 1992M1–2018M12. The forecast criteria
reported include the recursive MSPE expressed as a ratio relative to the monthly average
no-change forecast. All forecast criteria are evaluated in the levels of the real price of oil.
The first 30 months are dropped to reduce starting-point effects.



Take-away

I Aggregating higher-frequency data

◦ introduces loss of information (e.g., Rossana & Seater 1995)

◦ changes interpretation of standard forecast comparisons

→ use closing observations for estimation & forecast evaluation

I New benchmark for real price of crude oil changes assessments of
models & oil price predictability:

◦ daily oil prices are “random walkish”
◦ real price of crude oil is predictable by construction
◦ but most models do not beat the new benchmark

I Averaging can be desirable, but watch out for settings in which

◦ series of interest is temporally aggregated
◦ underlying data is persistent



Thank you!
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