

The value of flexible electricity demand in a future sector-coupled European <u>energy system</u>

Steffi Misconel, Christoph Zöphel, Dominik Möst

1st IAEE Online Conference 7th – 9th June 2021 Concurrent Session 137: European Power Systems, Room: Parallel Room 17 Wednesday, 2021-06-09, 17:00 - 19:00 CEST

Assessing the value of demand response in a decarbonized energy system - A large-scale model application

- - Background: Increasing need for power system flexibility on supply and demand side
- Method: Scenario framework and main input parameter for the electricity market model ELTRAMOD
- **Results:** Quantification of the demand response impact on different components in the electricity system 3
- **Conclusion:** Underlining the significant value of demand response

The decarbonization of the energy system leads to an increasing demand for power system flexibility

- EU climate targets and decarbonization of the whole energy system to achieve climate neutrality in 2050 (European Green Deal)
- 2 Therefore enforced deployment of high shares of RES needed (amongst others)
- 3 Leads to high fluctuations in electricity supply
- 4 Electrification of different sectors leads to increasing electricity demand (e.g. industry, transport sector)
- 5 Necessitates balancing of electricity supply and demand
 - \Rightarrow Increasing need for power system flexibility on supply and <u>demand side</u>

OBJECTIVE

Value assessment of demand response in a system perspective against the background of two strongly contrasting decarbonization pathways (decentralized and centralized European electricity system) with 100% RES and sector coupling

1 Background 2 Method 3 Results 4 Conclusion

Assessing the value of demand response in a decarbonized energy system – A large-scale model application

Method: Scenario framework and main input parameter for the electricity market model ELTRAMOD

- 3 **Results:** Quantification of the demand response impact on different components in the electricity system
- **Conclusion:** Underlining the significant value of demand response

A scenario framework describing a decentralized and centralized energy system to assess the value of demand side flexibility

	MORE DECENTRALIZED TOD	DAY MORE CENTRALIZED			
Renewable energy sources	 Stronger deployment of PV rooftop and battery systems (100% RES share in 2050) 	 Stronger deployment of wind offshore (100% RES share in 2050) 			
Sector coupling	 PtG - Decentralized onsite hydrogen production by small-scale electrolysis (389 TWh_{el} in 2050) 	 PtG - Hydrogen production in large-scale electrolysis with distribution by pipelines to consumers (855 TWh_{el} in 2050) 			
	 PtH - Heat supply on individual level (285 TWh_{th} in 2050) Individual small-scale energy sources 	 PtH - Heat supply on a centralized level (750 TWh_{th} in 2050) Centralized large-scale energy sources 			
Demand response potentials	 High participation on local level (DSM, multi-modal transport) Theoretical hourly potential 1,648 GW_{el} 	 Lower participation and acceptance on local level (DSM, multi-modal transport) Theoretical hourly potential 370 GW_{el} 			
	 Technical hourly available potential 490 GW_{el} Stronger deployment of battery systems, electro-mobility 	 Technical hourly available potential 140 GW_{el} 			
	20	50			

Different combination of RES capacities and electricity demand for the decentralized and centralized scenario framework

RES expansion pathways

- Geographically highly resolved data on land availability
- Hourly time series of vRES generation based on weather data
- Theoretical share of 100% RES generation at future's electricity demand in 2050

Electricity demand

- Increasing electricity demand due to electrification of other sectors
- Hourly electricity demand profiles from eLOAD (open-access data set*)

Industry

* Source: https://data.esa2.eu/tree/REFLEX

Higher demand response potentials in the decentralized scenario due to higher acceptance on local level

Demand response (DR) potentials

- Max. available DR potential (max. load) from eLOAD
- 15 DR processes of four different sectors

Demand response (DR) profiles

- Max. <u>hourly</u> available DR potentials from eLOAD (open-access data set*)
- Country-specific and process-aggregated DR profiles

* Source: https://data.esa2.eu/tree/REFLEX

Sector	Demand response processes	Demand response potential [GW] A			Act. costs	
		Europe		Europe		[EUR/
		decentral 2050		central 2050		MWhj
Industry	Cement grinding	0.2	0%	0.1	0%	100
	Electric arc furnace	10.6	0.6%	6.4	1.7%	100
	Aluminum (primary)	0.0	0%	1.5	0.4%	100
	Copper (primary)	0.0	0%	0.1	0%	100
	Mechanical pulp	1.1	0.1%	0.7	0.2%	100
	Hydrogen electrolysis (feedstock)	185.7	11.3%	*	*	60
	Circulation pumps	11.0	0.7%	7.4	2.0%	20
iary	Heat pumps (space heating)	23.5	1.4%	7.1	1.9%	10
Tert	Refrigeration	13.0	0.8%	8.8	2.4%	10
	Ventilation and air-conditioning	3.6	0.2%	2.3	0.6%	10
tial	Heat pumps (space heating)	105.2	6.4%	74.8	20.2%	0
ident	Refrigerators	10.4	0.6%	0.0	0.0%	0
Res	Battery Storage	234.7	14.2%	0.0	0.0%	0
Transport	Hydrogen electrolysis	170.9	10.4%	*	*	60
	E-mobility - passenger cars	878.0	53.3%	260.7	70.5%	0
Max. DR potential [GW]		1,648	100%	370	100%	
Max. hourly available DR potential [GW]		490	30%	140	38%	

*Model-endogenous result from ELTRAMOD

Source: Demand response data according to REFLEX project 2019; activation costs based on own assumptions, Ladwig 2018, Gils 2015, McKenna et al. 2018.

TU Dresden, Chair of Energy Economics

ELTRAMOD – A fundamental linear optimization and electricity market model (NTC-based)

MODEL INPUT

- Technology specific power plant characteristics (e.g. capacities, efficiencies, fuel types, emission factors, availabilities etc.)
- Economic parameter (e.g. loadchange costs, hourly fuel and CO₂ price profiles)
- European transmission capacity (NTC)
- <u>No</u> congestion within one market zone (copper plate)
- 17 conventional generation technologies
- RES capacities and hourly generation profiles
- Hourly electricity demand per country
- Country-specific aggregated demand response profiles

* with technology-specific aggregated power plants representation

FURTHER MODEL OUPUT

- Power plant investment and dispatch
- Cost-minimal (optimal) dispatch of flexibility options
- CO₂ emissions
- Export-import flows
- Integrated/curtailed RES
- Dispatch costs/total system costs

Modeling the impact of demand response with the electricity market model ELTRAMOD

$DR_{t,c}^{OPT}$	Optimal hourly dispatch of demand response
$dr_{t,c}^{MAX}$	Maximal positive hourly demand response potential (for residual load reduction)
$dr_{t,c}^{MIN}$	Minimal negative hourly demand response potential (for residual load increase)
dr ^{SHARE}	Share of activated demand response potential
$RESDEM_{t,c}^{OPT}$	Optimized residual load (smoothed)
$resdem_{t,c}$	Residual load (unsmoothed)
$t \in T$	Hour of a year
a.c.C	Country of considered geographical scale (EU-27, United Kingdom, Norway,
ιει	Switzerland, Balkan countries)

<u>___2_</u>

Assessing the value of demand response in a decarbonized energy system – A large-scale model application

- **Background:** Increasing need for power system flexibility on supply and demand side
- 2 Method: Scenario framework and main input parameter for the electricity market model ELTRAMOD
- 3 **Results:** Quantification of the demand response impact on different components in the electricity system
- **Conclusion:** Underlining the significant value of demand response

Similar residual load after smoothing effect of demand response and PtX for the decentralized and centralized scenario

Impact of demand response on the residual load

- Model-exogenous input parameter are different between the DEC/CEN scenario
- Centralized scenario -> <u>low</u> smoothing effect by DR and <u>high</u> load increase potentials of PtG
- DR potentials are not always activated to its full extent in the hourly mean
- In the midday and evening hours some DR potential remains unused, in the night and in transition the activated DR potential is often fully exploited

The smoothening effect of the residual load by demand response directly affects the power plant capacity and generation mix

Impact of demand response on the capacity and generation mix

- Decreasing peak load and medium load capacities due to DR in both scenarios
- DECENTRALIZED SCENARIO DR₂₅-DR₁₀₀
 - Decline of total capacity by 4-12% (18-60 GW)
 - Decline of specific capacity per activated DR potential by 0.16-0.13 GW/GW_{DR25-100}
- CENTRALIZED SCENARIO DR25-DR100
 - Decline of total capacity by 1-4% (3-15 GW)
 - Decline of specific capacity per activated DR potential by 0.10-0.12 GW/GW_{DR25-100}
- Reduced conventional generation due to DR activation

-0.05

-0.15

-0.25

-0.35

-0.45

-0.55

Δ capacity (DRi - DR0) [GW] rel. to max DRi load [GW]

The activation of demand response is more efficient to smooth the residual load than using energy storages

Impact of demand response on storage requirements

 DR reduces total storage capacity and storage operation for both scenarios

DECENTRALIZED SCENARIO DR₂₅-DR₁₀₀

- Decline of **13-54%** (from **464 GW**)
- A-CAES and redox-flow batteries reduced by 0.44 GW/GWDR100 (EPR 10 MWh/MW)
- Small / medium-sized lithium-ion batteries 0.07 GW/GWDR100 (EPR 1-4 MWh/MW)

CENTRALIZED SCENARIO DR₂₅-DR₁₀₀

- Decline of 4-16% (from 318 GW)
- A-CAES and redox-flow batteries
 0.23 GW/GWDR100
- Small / medium-sized lithium-ion batteries 0.14 GW/GWDR100

central

Higher vRES integration due to demand response, but slightly declining market value factors due to lower electricity prices

Impact of demand response on integration and market value factors of vRES

- Curtailment can be decreased due to DR in both scenarios
- Market values of vRES correspond to the specific market revenues earned (without subsidies)
- Market value factor avoids the effect that countries with on average higher electricity prices achieve higher market values for vRES

CENTRALIZED SCENARIO DR₂₅-DR₁₀₀

 More stable and higher electricity prices lead to lower declining effect of DR on market value factors of vRES

09 June 2021

A decentralized system with demand response achieves higher CO₂ reductions at lower system costs compared to the centralized system

(DR_i - DR₀) rel. to max. DR_i load [GW]

∆ total system cost [MEUR]

0

-10

-20

-30

-40

-50

-60

-70

-39.2

-65.4

DR25

Impact of demand response on CO₂ emissions of the electricity sector

- Additional vRES integration and reduced conventional generation due to DR lead to CO₂ emissions reduction
- Similar range of CO₂ reduction related to max. DR potential 0.045 Mt_{CO2}/GW_{DR100} (dec) and 0.037 Mt_{CO2}/GW_{DR100} (cen)

Impact of demand response on total system costs

-37.8

-59.6

DR50

-38.6

-57.3

DR75

 Higher decline in total system costs in DEC scenario due to avoided investments and lower electricity generation by backup and peak load capacities, higher fuel savings and lower expenditures for CO₂ emission allowances

dec

-38.9

-55.0

DR100

cen

Assessing the value of demand response in a decarbonized energy system – A large-scale model application

- **1** Background: Increasing need for power system flexibility on supply and demand side
- 2 Method: Scenario framework and main input parameter for the electricity market model ELTRAMOD
- 3 **Results:** Quantification of the demand response impact on different components in the electricity system
 - **Conclusion:** Underlining the significant value of demand response

Straightforward method to estimate the value of demand response in a large-scale electricity market model

- The results confirm earlier findings, underlining the significant value of demand response measures to reduce power plant and storage capacities.
- Compared to the results without activation of the demand response potential, total system costs and CO₂ emissions can be reduced.
- However, differences occur between the decentralized and centralized scenario, mainly influenced by diverging assumptions on <u>fluctuating renewable energy expansion</u> and the <u>availability of demand</u> <u>response</u> application potentials.
- In the decentralized system with higher share of PV (with daily and seasonal fluctuation characteristics), demand response can balance daily short-term fluctuations more efficiently, and thus
 - higher marginal reduction values of 55 MEUR/GW_{DR} concerning the total system costs and of 0.045 Mt_{co2}/GW_{DR} regarding CO₂ emissions per activated demand response potential can be achieved
 - compared to the centralized scenario with 39 MEUR/GW_{DR} and 0.037 Mt_{co2}/GW_{DR}, which is dominated by high penetration of wind offshore power plants (with consistent, short but strong fluctuations, particularly in the evening/night when DR potential is lower)

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Steffi Misconel Research Associate

University of Technology Dresden Faculty of Business and Economics Chair of Energy Economics

Email: <u>steffi.misconel@tu-dresden.de</u> Website: <u>www.ee2.biz</u> The value of flexible electricity demand in a future sector-coupled European energy system

Steffi Misconel, Christoph Zöphel, Dominik Möst

1st IAEE Online Conference 7th – 9th June 2021 Concurrent Session 137: European Power Systems Room: Parallel Room 17 Wednesday, 2021-06-09, 17:00 - 19:00 CEST

System load, residual load and max. hourly demand response potential as model input parameter

<u>ee2</u>_

Results conventional electricity generation and storage dispatch

ee²-

Calculation of the market value factor for volatile renewable energy sources

$$MVF_{c}^{tech} = \frac{\sum_{t=1}^{T} g_{t,c}^{tech} \cdot p_{t,c}}{\sum_{t=1}^{T} \frac{p_{t,c}}{T} \cdot \sum_{t=1}^{T} g_{t,c}^{tech}}$$

$$\overline{MVF}^{tech} = \frac{MVF_c^{tech}}{C}$$

MVF_c^{tech}	Technology-specific market value factor
<i>MVF</i> ^{tech}	Average technology-specific market value factor
$g_{t,c}^{\mathit{tech}}$	Technology-specific electricity generation
$p_{t,c}$	Day-ahead wholesale electricity price
$t \in T$	Hour of a year
сєС	Country of EU-27, United Kingdom, Norway, Switzerland, Balkan countries

Source: based on Eising et al. 2020

<u>662</u>