

Identifying relevant parameters to replicate a step-by-step retrofitting optimisation model in a building stock level

Iná MAIA and Lukas KRANZL

IAEE - Online, 2021

07.06.2021

Content

- Introduction
- Research question
- Method
- Results
- Conclusions

Introduction: empirical evidences

Existing building stock volume of comprehensive / partial refurbishment and repair work (in Mio. Euro) Stand: Germany, 2010

Source: adapted from Fehlhaber, 2017 – PhD Dissertation – Bewertung von Kosten und Risiken bei Sanierungsprojekten

IAEE - Online, 2021

Introduction: political context

- Building renovation passports:
 - Energy Performance of Buildings Directive (EPBD) 2018/844/EU introduced in Article 19a:

"complementary document providing a **long-term** and **step-by-step** renovation roadmap for a specific building"

- Step-by-step roadmap
 - can have various steps, normally 2-5 steps (1 step = single step approach)
 - defines renovation measure or package of measures per step
 - provides techno-economic specifications of each renovation step, including energy savings, investment costs etc.
 - should guide and help building owners through the renovation process

Overall objective and research question

- Objective:
 - Develop a step-by-step retrofitting optimisation model to deliver the optimum timing, when each step should be performed
 - Test the model using roadmaps developed during the iBRoad project
 - Understand how to replicate the approach to a building stock level
- Research questions:

Which results were obtained from a first analysis of the model?

based on the learnings from this analysis:

How to deliver plausible **budget restrictions for the retrofitting**, representative to the building stock?

Method: model objective function

Objective function: maximising net present value

$$\max NPV = \sum_{t}^{T} \frac{CF_{t}}{(1+r)^{t}} + \frac{L_{T}}{(1+r)^{T}}$$

$$CF_{t} = INC_{t} * s - IC_{er,t} - EC_{t} - OMC_{t}$$

$$NPV, \text{ energy related net present value [EUR];}$$

$$L_{T} = \sum_{i} \sum_{t} IC_{er,t,i} * \frac{(T-t)}{t_{L,i}}$$

$$L_{T} = \sum_{t} \sum_{t} IC_{er,t,i} * \frac{(T-t)}{t_{L,i}}$$

$$L_{T} = \sum_{t} \sum_{t} IC_{er,t,i} * \frac{(T-t)}{t_{L,i}}$$

- t, time [a];
- T, period of economic consideration [a];
 - INC, household income [EUR/a];
- s, expenditure share of annual income [%/a];
- ICer energy related investment cost of retrofitting measures [EUR];
 - EC, annual running energy costs [EUR/a];
 - OMC, operation and maintenance costs [EUR/a];
 - tL,technical lifetime [a];
 - T, optimisation period time [a];

- Restrictions:
 - Material's aging process
 - Budget restriction

Method: model architecture

- Optimisation period: 2020-2050
- Interest rate: 3%

Case study: 5 buildings

 Buildings selected and roadmaps developed during the H2020 iBRoad project

ID	Country	Year of construction	Net floor area [m ²]	Year of heating system replacement	Heating System	
1	PT	1937	74	1937	Electric heater	
2	PL	1975	218	1975	Gas boiler	Fixed budget restriction: 3.000 Furo
3	PL	1975	368	2004	Gas boiler	
4	PL	1981	285	1981	Coal boiler	
5	BG	1994	160	1999	Air heat pump	

Case study: exemplary step-by-step roadmap (ID =1)

ID	Step	Measure/Package of measures	Primary energy demand [kWh/m ²]	Useful energy demand [kWh/m ²]	Carbon emission [kg/m ² a]	Investment cost [Euro]	Main energy source
1	0	Status quo	600	327	100		electricity
1	1	Thermal insulation on exterior walls - application on the inside with light coating; thermal insulation with sloped roof - application on the slopes on the resistant structure of the sloped roof; Replacement of existing frames with energy class A windows	249	99	36	14,500	electricity
1	2	Add a biomass boiler	51	112	7	3,000	wood
1	3	Installation of individual inclined solar thermal system	27	87	4	2,000	wood

Source: Maia et al , 2021

IAEE - Online, 2021

Result: model analysis

Result: sensitivity analysis

- Model is sensitivity to the budget restrictions
- There is a need to define the budget restrictions more accurately

	Budget: 900				Budget: 3,000			Budget: 6,000		
ID	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	
1	2034	2036	2023	2025	2025	2021	2023	2024	2021	
2	2023	2050	2032	2021	2032	2024	2021	2027	2023	
3	2038	2041	2037	2022	2028	2027	2022	2026	2025	
4	2023	-	_	2031	2047	2030	2021	2037	2027	
5	2031	2034	2027	2024	2024	2022	2024	2024	2022	

Result: SILC statistical analysis

Dwelling type and tenure status per country

- SFH (Detached and semi-detached) For_free_
- MFH (Small and Big appartment) Outright_owner_
- MFH (Small and Big appartment) Tenant___
- MFH (Small and Big appartment) For_free_

- SFH (Detached and semi-detached) NA
- MFH (Small and Big appartment) Owner_paying_mortgage
- MFH (Small and Big appartment) Reduced_rented_
- MFH (Small and Big appartment) NA

IAEE - Online, 2021

Result: SILC statistical analysis

13

housing costs) 60,000 50,000 40,000 000,000 Enro 20,000 10,000 0 AT IT ES RO SE ΡL BG PΤ FR NL SFH_mean Outright_owner_ ● SFH_mean Owner_paying_mortgage ● SFH_mean Tenant__ SFH_mean Reduced_rented_ SFH_mean For_free_ MFH_mean Outright_owner_ ● MFH mean Owner paying mortgage ● MFH mean Tenant • MFH mean Reduced rented MFH_mean For_free_

Annual average "proxy indicator" for budget restriction (Disposable income minus total

Conclusions

1) Which results were obtained from a first analysis of the model?

- Step-by-step retrofitting model delivered plausible optimum timing when each step should be performed
- Cash-flow net present value: varied between 15.576 and -13.679 € (due to individual technical characteristics of each building and the individual roadmaps)
- Total period of a renovation roadmap (the period between the first and the last step): between 1 and 14 years and 2 to 11 years (according to the different constraints compared) fixed budget restrictions of 3,000 €
- More details about the model and the analysis: Maia et al, 2021 Paper "New step-by-step retrofitting model for delivering optimum timing" provides more details about the model and the analysis <u>https://www.sciencedirect.com/science/article/pii/S0306261921002348#f0010</u>
- Sensitivity analysis showed the need to define more accurate budget restrictions, as the model is very sensitivy to this parameter

2) How to deliver plausible **budget restrictions for the retrofitting** representative to the building stock?

- Country specific budget restrictions defined according to the building type and tenure status
- EU SILC and HBS datasets are important sources of this information
- Merging SILC and HBS is the ideal approach

Thank you for your attention!

Iná Maia maia@eeg.tuwien.ac.at