UNDERSTANDING IMPACTS OF POWER INTERRUPTIONS ON QUALITY OF LIFE: OPPORTUNITIES FOR SOCIALLY-OPTIMAL POLICY AND DEMAND-SIDE RESILIENCE

LORENZ RAY PAYONGA

INTERNATIONAL ADJUNCT RESEARCHER THE UNIVERSITY OF TOKYO MEMBER, IAEE

TOMOHIKO IHARA, PH.D.

ASSOCIATE PROFESSOR THE UNIVERSITY OF TOKYO

1ST IAEE ONLINE CONFERENCE 8 JUNE 2021

k xan

ERCOT: Texas power grid was 'seconds, minutes' away from catastrophic blackout event

FOX4

Rolling power blackouts turn into lengthy outages in Texas as energy demand reaches record high

By Hanna Battah , Steve Noviello , Steven Dial and Mark Norris | Published February 15 | Dallas | FOX 4

SecoWatch

POLAR VORTEX

Texas Blackout: Death Toll Mounts While Food and Water Are Impacted

By Climate Nexus | Feb. 18, 2021 11:36AM EST

CLIMATE

The Texas Blackout Is the Story of a Disaster Foretold

POLITICS & POLIC

Those in charge of Texas's deregulated power sector were warned again and again that the electric grid was vulnerable.

By Jeffrey Ball February 19, 2021

Why every state is vulnerable to a Texas-style power crisis

"The infrastructure we have built right now really isn't ready." By Umair Irfan | Mar 11, 2021, 4:30pm EST

PARAGUAY, and URUGUAY (2019) Affected people: 48 MILLION Duration: 7+ hours Cause: DESIGN ERRORS

SOUTH AFRICA (2019-) Affected people: Up to ~20 million at a time Duration: 2-4 hours at a time (rolling) Cause: ENERGY CRISIS

Background photo: Natali | COUB.COM

٠3

48 BILLION HOURS "LOST" HUMAN TIME WORLDWIDE DUE TO POWER INTERRUPTIONS

Estimations done by researcher based on The World Bank Doing Business Report 2020 Interrupted Human Time = SAIDI × Electricity Access × Population

"DRESS REHEARSALS"

for the future in which they will appear with greater frequency and severity.

(Byrd & Matthewman, 2015)

Infrastructure and Public Services

Direct costs

- Opportunity cost of idle resources
- Spoilage and damage

Indirect costs

- Costs to public users of impacted services and institutions
- Health and safety effects
- Potential social costs stemming from looting, vandalism, etc.

Industrial, Commercial, and Agricultural Firms

Direct costs

- Opportunity cost of idle resources (labor, land, capital, profits)
- Shutdown and restart costs
- Spoilage and damage
- Health and safety effects

Indirect costs

- Cost on other firms supplied by impacted firm (multiplier effect)
- Costs on consumers if impacted firm supplies a final good
- Health and safety-related externalities

(Munasinghe, 1988; Praktiknjo, 2014; Kim et al, 2015; Linares & Rey, 2013)

Residential Consumers

Direct costs

- Inconvenience, discomfort, lost leisure, stress, etc.
- Restriction of household
 activities
- Difficulty on ICT access
- Limited use of financial services
- Lost income
- Water shortage
- Out-of-pocket costs (spoilage, property)
 - Health and safety effects

Indirect costs

 Costs on other households and firms associated with household members (spillover effects)

Photo: CNN

diminished **QUALITY OF LIFE** DUItidimensional character of living conditions

multidimensional character of living conditions (Krause, 2016)

IMPACT VALUATION APPROACHES

IMPACT VALUATION APPROACHES

Cost per unit of unserved energy

- Typical unit: \$/kWh, \$/kW (normalized)
- Terminologies
 - Value of Lost Load
 - Customer Interruption Cost
 - Cost of Energy Not Supplied
- Most commonly used
- Useful for scarcity/ration planning (de Nooij, et al, 2007)

Cost per unit time

- Typical unit: \$/hour; \$/year
- Terminologies
 - Customer Interruption Cost
 - Damage Cost
 - Value of Lost Leisure
- Useful for network reliability investment planning (de Nooij, et al, 2007)

IMPACT VALUATION APPROACHES

RESEARCH GAP

Residents / Private individuals

Mostly intangible, indirect approach Socio-economic indicators / Valuation

RESEARCH GAP

Becker et al, 2016; Morrissey et al, 2018

IMPACT VALUATION STUDIES IN THE RESIDENTIAL SEGMENT

- "Black-box" models (Becker et al., 2016; Morrisey et al., 2018)
- Nonstandard methodology
- Lacking in **international comparability** (Schroder & Kuckshinrichs, 2015)
- Potentially speculative / hypothetical (de Nooij, et al, 2007; Shivakumar et al., 2017)

Only 52 countries so far have published work on quantifying impacts of power interruptions on the residential segment (33 are in Europe)

OBJECTIVE

WHY STUDY IMPACTS OF POWER INTERRUPTIONS ON QUALITY OF LIFE?

Socially-optimal Electric Utility Investment and Operations Inclusive Energy Policy and Regulations Enhanced Quality of Life

OBJECTIVE

METHODOLOGY

FRAMEWORK BASED ON LIFE CYCLE IMPACT ASSESSMENT (LCIA)

*optional components as per ISO 14044

Hauschild & Huijbregts 2015

LCIA: ENDPOINT MODELLING

Hauschild & Huijbregts, 2015

Endpoint indicators – "damage modelling"

CHARACTERIZATION OF "ELEMENTARY FLOWS" IN LCIA Generic framework

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA)

Conceptually based on Life Cycle Impact Assessment (LCIA)

METHODS

Albay, Philippines

QUICK FACTS (as of Mar 2019)

- 1.3 million population
- 275,601 households (2015)
- 191,275 electricity subscribers
- 88 kWh average residential electricity consumption (19th)

 ARD HIGHEST FREQUENCY OF INTERRUPTIONS
 HIGHEST NUMBER OF MOMENTARY INTERRUPTIONS (duration < 5 mins)

STUDY AREA: ALBAY, PHILIPPINES

METHODS

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA)

Conceptually based on Life Cycle Impact Assessment (LCIA)

*as affected by advance notice and intermittency

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA) Conceptually based on Life Cycle Impact Assessment (LCIA)

ED Electricity Dependence

Based on self-reported electricity dependence of respondents

TIME	Monday	Tues	day	Wednes	day	Thursday		Friday	Saturday Holiday	/	Sunday	TIME
12:00 AM	^	↑		1		1	1	•	1	-	^	12:00 AM
1:00 AM							_					1:00 AM
2:00 AM							_		_			2:00 AM
3:00 AM	- 7		2	- 7	,	P		7	17		P	3:00 AM
4:00 AM												4:00 AM
5:00 AM												5:00 AM
6:00 AM	•	•		v		v	- ,	,	•		•	6:00 AM
7:00 AM		`			↑			↑	- 1	`	↑	7:00 AM
8:00 AM												8:00 AM
9:00 AM												9:00 AM
10:00 AM											Ŧ	10:00 AM
11:00 AM												11:00 AM
12:00 PM									,	,	•	12:00 PM
1:00 PM		W		W		-W		W	↑		1	1:00 PM
2:00 PM									1		1	2:00 PM
3:00 PM											L	3:00 PM
4:00 PM									•		•	4:00 PM
5:00 PM										·	<u>`</u>	5:00 PM
6:00 PM												6:00 PM
7:00 PM		/	•		≁	- ·	/					7:00 PM
8:00 PM	↑ ∓			1		1 F		1.	- F		t	8:00 PM
9:00 PM	•		-	V		V '						9:00 PM
10:00 PM	-P	Y P		P	↑	-P	·	•				10:00 PM
11:00 PM	- ' .	/	1		1	· · •		P 1		, –		11:00 PM

"Life Roles" (Nevill & Super, 1986)

Household

Life Role Time-use Inventory

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA) Conceptually based on Life Cycle Impact Assessment (LCIA)

ED Electricity Dependence

Based on self-reported electricity dependence of respondents

Electricity dependence schedule (O-4)

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA)

Conceptually based on Life Cycle Impact Assessment (LCIA)

*as affected by advance notice and intermittency

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA) Conceptually based on Life Cycle Impact Assessment (LCIA)

Not too disruptive;

many alternatives

Not disruptive at all

IS Impact		Impa	Household responsibilities	Leisure activities	Work effectiveness	Learning activities	Community participation	Personal care		
Salience		Discomfort		3	4	2	2	1	2	
lated effects of impacts on		Cannot watch TV	shows	D	3	D	D	D	D	
		Cannot charge mobile phone			3	4	1	1	D	
"life roles"		Self-reported impacts and disruption levels (0-4)								
0		1	2			3			4	

Somehow disruptive;

enough alternatives

Totally disruptive

Disruptive; few or

inconvenient

alternatives

POWER INTERRUPTION IMPACT ASSESSMENT (PIIA)

Conceptually based on Life Cycle Impact Assessment (LCIA)

*as affected by advance notice and intermittency

METHODOLOGY

CONTINGENT VALUATION

"There is a device you can rent that you can use during power interruptions to power up ALL your appliances and devices at home. You will be shown scenarios based on duration and a corresponding price for usage of such device. If you are willing to pay for it, select YES. Otherwise, select NO."

Bidding Game elicitation method (Online survey: Payment Cards)

Interruption Duration Scenarios

FIELD SURVEY

Pre-test survey (n=13) held on March 23, 2019

- Group-administered surveys held in the top 10 most populous cities and towns of Albay (78% of population) in October 2019
- Stratified random sample invited from local government household databases
- n = 151 (34.3% response rate)

ONLINE SURVEY

- Online validation survey
 - Online snowball approach (March 24 to April 28, 2020)
 - Combined w/ Facebook ads (April 28 to May 9, 2020)
- n = 207

METHODS

DAMAGE ESTIMATION

METHODS

METHODOLOGY

Power Interruption Impact Assessment (PIIA) Model

Health and Comfort

- Discomfort due to hot temperature
- Cannot sleep well
- Getting sick

Household Management

- Cannot do household chores needing electrical equipment/appliances
- Food spoilage
- Difficulty of caring for household members, especially those vulnerable

Mostly linked to duration

Power Interruption Impact Assessment (PIIA) Model

 High component of effects on personal care; mostly asleep

Health and Home and Comfort Family 26% 29% POWER INTERRUPTIONS Household Occupation Management 7% 18% impacts Interruption Value of Lost Load Damage Work and Cost (VoLL) Livelihood 16% Raw ₱3.50/hr ₱22.60/kWh (\$0.07/hr) (\$0.45/hr) ICT Access and Data Security 15% Personal Care 64% Household Assets 10% Entertainment and Recreation 8% Safety and Security 29 Educational Act OTHERS 39

12-6AM

Personal care time

- Work day usually begins at 8AM
- Mostly long interruptions

6AM-12PM

Occupation/Work time

- Work day usually ends at 5PM
- Shift to household activities observed

Home/Family time

12NN-6PM

- Peak of household activity and leisure
- Mostly short interruptions

Health and Comfort 24% Home and Family POWER INTERRUPTIONS 43% Household Management 20% impacts Interruption Value of Lost Load Damage Work and Leisure 7% (VoLL) Livelihood Cost 15% Raw ₱6.07/hr ₱39.18/kWh Occupation CT Access and 12% (\$0.12/hr) (\$0.78/hr) Data Security 15% Household Assets 12% Personal Care Entertainment and 37% Recreation 7% Educational Activities 39

6PM-12AM

Leisure time

DAMAGE TO QUALITY OF LIFE IN ADDITION TO ECONOMIC LOSSES

Estimated Power Interruption Costs in 2018

FINDINGS SUMMARY

- QoL impacts are mostly linked to duration and heat-related effects
- Interruptions at different parts of day affect people differently
- Effects on QoL are more salient at night (6PM-6AM) than during the day (6AM-6PM)
 - Might have changed during the pandemic
 - High value placed on the Home/Family life role than Work/Occupation
- As an effect of the pandemic, almost all impact categories are already situated within homes

Impact Categories

Relative Importance and Vulnerability

Temporal Variations

- Prioritization of healthcare facilities
- Provisions for ventilation and hydration
- Decoupling of water and electricity supply

Impact Categories

Impact Categories

Relative Importance and Vulnerability

Temporal Variations

Ц	Н	Н	п
П	Н		
		Н	
			п

Relative Importance and Vulnerability

- Budgeting/Allocation of resources based on revealed relative importance of impact categories and electricitydependent life roles
- Use of VoLL and damage cost estimates for cost-benefit analyses and resource allocation among consumer groups

Impact Categories

Relative Importance and Vulnerability

Temporal Variations

 Operational decisions by electric utilities must consider time-dependent consumer behavior

Temporal Variations

FURTHER STUDY

Performance Evaluation Deep-dive on particular Impact Categories and/or Life Roles

Explore applicability to other utilities

SPECIAL THANKS

Mayors of 3 cities and 7 municipalities of Albay

Stakeholders

Survey Facilitators

Additional support from the Environment Research and Technology Development Fund (S-14) of the Environmental Restoration and Conservation Agency of Japan

Scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT)

CITED REFERENCES

- Becker, S., Schober, D., & Wassermann, S. (2016). How to approach consumers' nonmonetary evaluation of electricity supply security? The case of Germany from a multidisciplinary perspective. *Utilities Policy*, 42, 74–84. https://doi.org/10.1016/j.jup.2016.06.012
- de Nooij, M., Koopmans, C., & Bijvoet, C. (2007). The value of supply security. The costs of power interruptions: Economic input for damage reduction and investment in networks. *Energy Economics*, 29(2), 277–295. https://doi.org/10.1016/j.eneco.2006.05.022
- Hanemann, W. M., & Kanninen, B. (1996). The Statistical Analysis of Discrete-Response CV Data (No. 798). Berkeley.
- Kim, K., Nam, H., & Cho, Y. (2015). Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea. *Energy Policy*, 76, 76–86. https://doi.org/10.1016/j.enpol.2014.10.020
- Krause, P. (2016). Quality of life and inequality. In L. Bruni & P. L. Porta (Eds.), Handbook of Research Methods and Applications in Happiness and Quality of Life (pp. 111–152). https://doi.org/10.4337/9781783471171
- Linares, P., & Rey, L. (2013). The costs of electricity interruptions in Spain: Are we sending the right signals? *Energy Policy*, *61*, 751–760. https://doi.org/10.1016/j.enpol.2013.05.083 Matthewman, S., & Byrd, H. (2014). *Blackouts: A Sociology of Electrical Power Failure*.
- Morrissey, K., Plater, A., & Dean, M. (2018). The cost of electric power outages in the residential sector: A willingness to pay approach. *Applied Energy*, *212*(August 2017), 141–150. https://doi.org/10.1016/j.apenergy.2017.12.007
- Munasinghe, M., & Sanghvi, A. (1988). Reliability of Electricity Supply, Outage Costs and Value of Service: An Overview. *The Energy Journal*, *9*(01). https://doi.org/10.5547/issn0195-6574-ej-vol9-nosi2-1
- Nevill, D. D., & Super, D. E. (1986). The Salience Inventory: theory, application, and research : manual. *Vocopher.Com.* Retrieved from http://www.vocopher.com/SII/Salience Inventory.pdf Philippine Statistics Authority. (2018). *Albay QuickStat June 2018*. Retrieved from https://psa.gov.ph/content/albay-quickstat-june-2018
- Praktiknjo, A. J. (2014). Stated preferences based estimation of power interruption costs in private households: An example from Germany. *Energy*, *76*, 82–90. https://doi.org/10.1016/j.energy.2014.03.089
- Rosenbaum, R. K., Hauschild, M. Z., Boulay, A. M., Fantke, P., Laurent, A., Núñez, M., & Vieira, M. (2017). Life cycle impact assessment. In *Life Cycle Assessment: Theory and Practice*. https://doi.org/10.1007/978-3-319-56475-3_10
- Schröder, T., & Kuckshinrichs, W. (2015). Value of lost load: An efficient economic indicator for power supply security? A literature review. *Frontiers in Energy Research*, *3*(DEC), 1–12. https://doi.org/10.3389/fenrg.2015.00055
- Shivakumar, A., Welsch, M., Taliotis, C., Jakšić, D., Baričević, T., Howells, M., ... Rogner, H. (2017). Valuing blackouts and lost leisure: Estimating electricity interruption costs for households across the European Union. *Energy Research and Social Science*, 34(May), 39–48. https://doi.org/10.1016/j.erss.2017.05.010
- Stevens, S. S. (Stanley S., & Stevens, G. (1986). *Psychophysics : introduction to its perceptual, neural, and social prospects*. Retrieved from http://opac.dl.itc.u-tokyo.ac.jp/opac/opac_link/bibid/2001298255
- World Bank. (2020). Doing Business 2020 Getting Electricity (Dataset). Retrieved from https://www.doingbusiness.org/en/data/exploretopics/getting-electricity

UNDERSTANDING IMPACTS OF POWER INTERRUPTIONS ON QUALITY OF LIFE: OPPORTUNITIES FOR SOCIALLY-OPTIMAL POLICY AND DEMAND-SIDE RESILIENCE

LORENZ RAY PAYONGA

INTERNATIONAL ADJUNCT RESEARCHER THE UNIVERSITY OF TOK YO MEMBER, IAEE

TOMOHIKO IHARA, PH.D.

ASSOCIATE PROFESSOR THE UNIVERSITY OF TOKYO

1ST IAEE ONLINE CONFERENCE 8 JUNE 2021