

1st IAEE Online Conference

Electric Bus Fleet Mileage Maximization with a Given Schedule Using Integer Programming

SWK E² - Institute for Energy Technology and Energy Management Marius Madsen | Prof. Dr.-Ing. Marc Gennat

SWK E² - Institute of Energy Technology and Energy Management

SWK E²: Institute at Hochschule Niederrhein in Krefeld (NRW)

Founding

- 2012 as competence centre
- 2017 transformation into an institute

Involved faculties

- Industrial Engineering
- Mechanical and Process Engineering
- Electrical Engineering

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Introduction

In Krefeld, public transport is based on trams and diesel buses

- 12 meter buses: 2.15 mio. km/a
- 18 meter buses: 2.25 mio. km/a

Local **emissions** by diesel buses → Electric buses

Electric buses economical?

Introduction

State of the art: Electric buses are not yet economically usable [9]

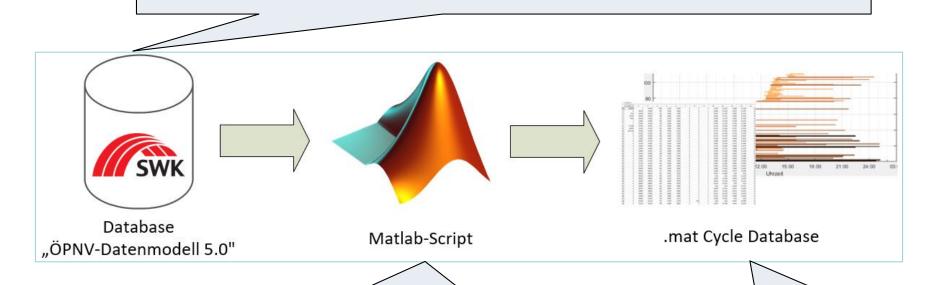
- Capital investments are higher than for diesel buses [4]
 - High impact of battery costs
- Mileage-related costs are lower than costs of diesel buses [3,9]

Object of investigation: Economic re-evaluation after...

- maximizing the electric driven mileage and
- minimizing of battery capacity when using electric buses.

Method:

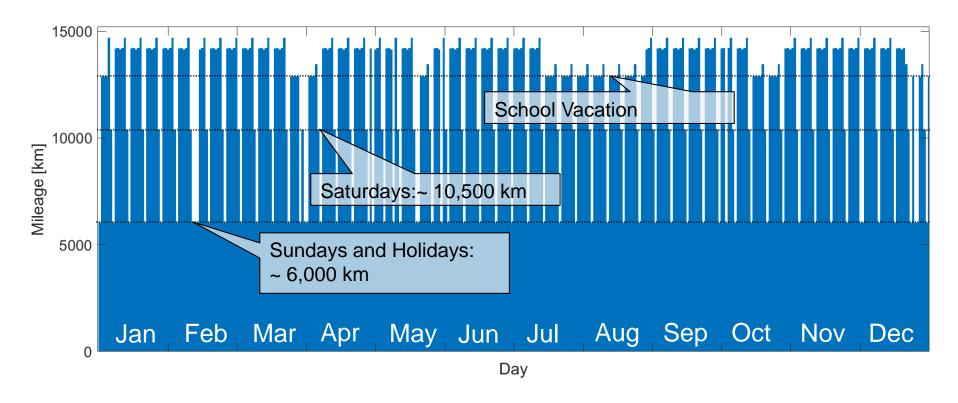
Modeling Optimization Evaluation



- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

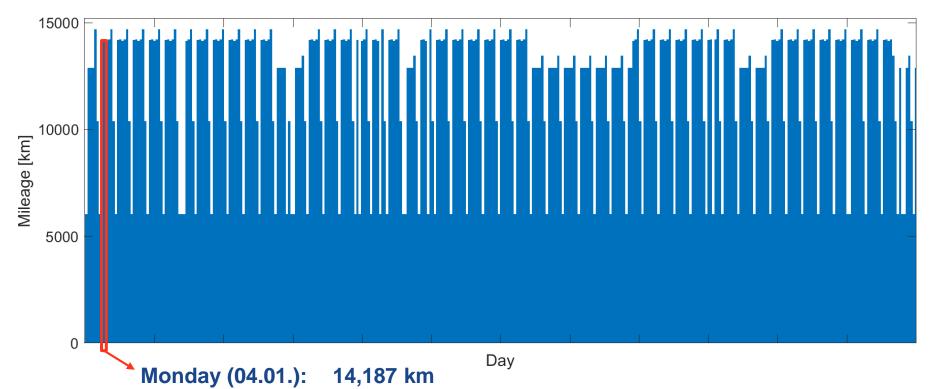
Modeling Data Basis

Local transport company SWK Mobil GmbH organizes cycle information, according to the **standard interface** "ÖPNV-Datenmodell 5.0". [11]


Matlab-Script was created to **import** the database, to **arrange** and **save** the **cycles** for each **day** type.

Result is the data basis for analysis, optimization and simulation

SWK E²


Modeling Cycle Database

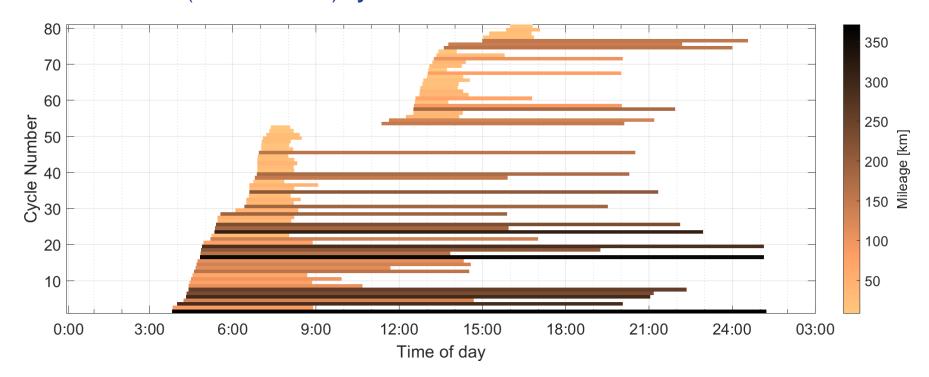
Cycle database as **sum of all cycle mileage** per day of the year:

Modeling Mileage per Day

Cycle database as **sum of all cycle mileage** per day of the year:

Standard buses: 6,237 km

Articulated buses: 7,950 km → Example on next slide

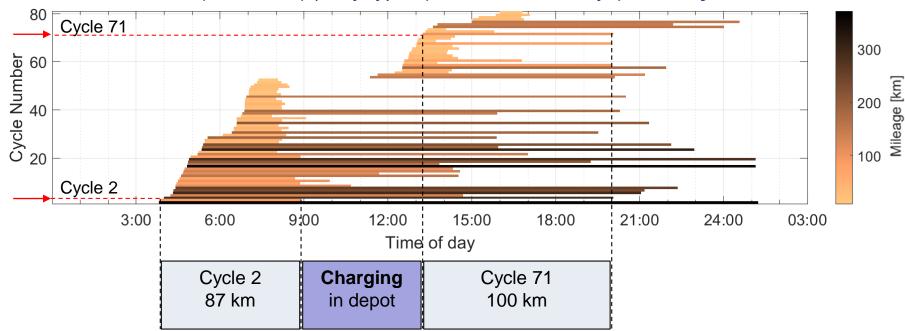


Modeling

Analysis of the Modeled Cycles

Example:

Articulated buses (18 meters) | Day type: (non-school-holidays) **Monday** | Sum: 7,950 km Total number of (articulated bus) **cycles: 81**


→ Not all cycles take place at the same time

Modeling Mileage per Day

Example:

Articulated buses (18 meters) | Day type: (non-school-holidays) Monday

In this example: Electric driven mileage is 187 km with a 100 km battery (approx.)

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Problem Formulation and Constraints Combination of Cycles

Base Case: A bus can travel...

- a long cycle, or
- several short cycles in a row.
 - → This allows intermediate **recharging** in depot

<u>Additional Constraints:</u> The energy requirements of the individual cycles vary, depending on: **Bus type**, weather, battery design, cycle specifications.

Problem Formulation and Constraints Combination of Cycles

Maximum of three bus operations per day and bus due to time overlaps

$$n_{comb} = \prod_{j=1}^{|B|} \sum_{i=1}^{n_{e,max}=3} {|U|-j+1 \choose i}$$

- For ten 18-meter buses, this results in more than $n_{comb} = 10^{48}$ combinations
- Challenge: Development of approaches to combine the cycles with the target
 - Minimized battery capacity
 - Maximized electrically mileage
 ...in a reasonable time
- Comparison of approaches
 - Heuristic
 - Integer linear programming

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Heuristic

Maximization of Electric Mileage

- The first part is to find and select possible combinations of cycles.
- The required heating and cooling capacity and the possible charging time between the cycles is considered.

for cycle(CyclesPerBus) $\leftarrow 1$ to size(CycleList) simultaneous cycles? true false $cycle_sequence \leftarrow cycle(1:end)$ battery capacity sufficient for cycle_sequence? insert in possible_sequence_matrix Ø cycles exist which begin at the end of the Ø cylcle sequence? false true $CyclesPerBus \leftarrow CyclesPerBus + 1$ Ø function call: find_possible_cycle_sequences Cycles at the same time?

Battery sufficient?

Cycle sequence expandable?

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Integer Linear Programming Target Function

Formulation of objective function:

$$\max_{x} \ c^T x \qquad \text{subject to} \qquad A_i \cdot x \leq d_i \qquad \forall \ i \ \in \{1,...,|d|\} \, ,$$

Decision vector x with length $|x| = |U| \cdot |B|$ ist

$$b = 1 \qquad b = 2 \qquad b = 3$$

$$x^{T} = (x_{u=1} \ x_{u=2} \cdots x_{u=|U|} \ x_{u=1} \ x_{u=2} \cdots x_{u=|U|} \ x_{u=1} \ x_{u=2} \cdots x_{u=|U|})$$

Vector c (|c| = |x|) includes **cycle lengths** of the circulations for all electric buses.

Integer Linear Programming

1. Constraint

Each Cycle can be used by a maximum of one electric bus:

$$\sum_{b=1}^{|B|} x_{(b-1)|U|+u} \le 1 \quad \forall \ u \in U$$

Constrains of the linear program:

$$A_i \cdot x \leq d_i$$

Formulation of the constraint for the linear Program:

$$b = 1 \qquad b = 2 \qquad b = 3$$

$$A_1 = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$$

Integer Linear Programming 2. Constraint

A bus may **not** make **more than one cycle** at the **same time**:

$$t_{start}, e_{i,b} \ge t_{end}, e_{i-1,b} + \Delta t \quad \forall i \in [2, |e_b|] \qquad \forall b \in B$$

Constrains of the linear program:

$$A_i \cdot x \leq d_i$$

Example: Time overlap of cycle 1 and 3:

Integer Linear Programming

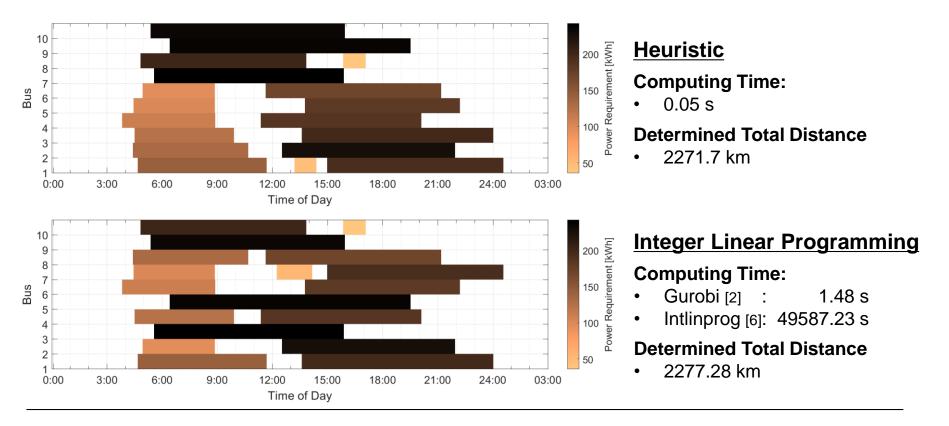
3. Constraint

Traction **batteries** must **always** be charged **between >0% and ≤100%**. Intermediate charges are only allowed in the depot between cycles.

$$\delta \leq SoC_{b,t} \leq 1 \quad \forall b \in B, \qquad t \in \{1, ..., 1440\}$$

Constraints of the linear program:

$$A_i \cdot x \leq d_i$$

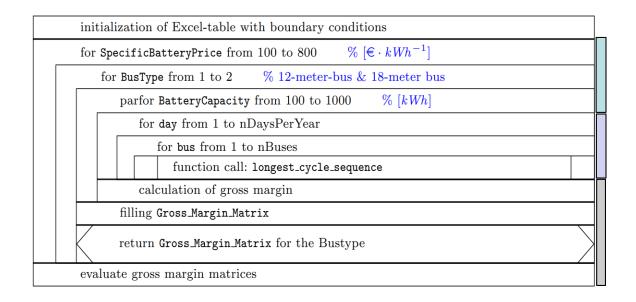

Example: Avoiding of the cycle combinations 1, 2 and 4 for all buses:

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Comparison

Example Results | 10 Buses | 250 kWh Battery

- Heuristic deviates of 0.25% but has significantly shorter computing time
- For further consideration the heuristic is used


- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Economic Analysis Variation of the Input Parameters

Extension of the heuristic

- to determine cost efficiency for different conditions
- to view an entire year

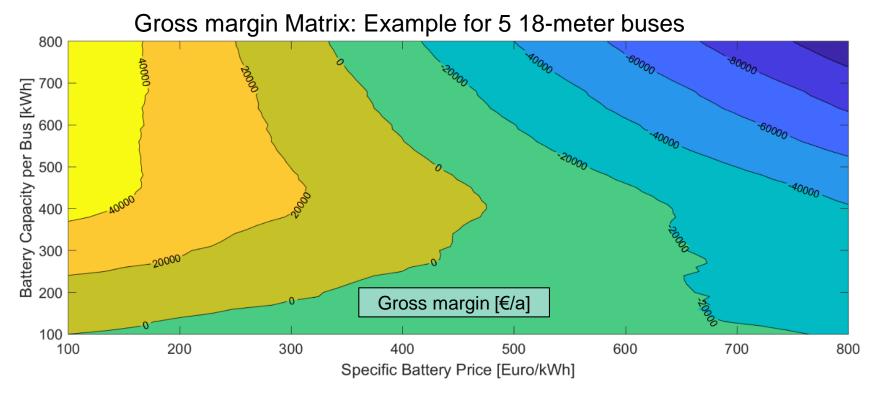
Variation of parameters

- Specific battery price
- Bus type
- Battery capacity

Iterate

- · Days of a year
- Quantity of electric buses

Calculate


· Gross margin for each iteration

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Economic Analysis

Results of Maximizing Electrical Operating Kilometers

 18-meter buses can be used economically in Krefeld if the specific battery price falls below € 480 / kWh

Current battery cell price: 97 € / kWh

Current battery pack price:
 600 - 1000 € / kWh
 [5, 7, 10]

- Introduction
- Modeling
- Problem Formulation and Constraints
- Approach 1: Heuristic
- Approach 2: Integer Linear Programming
- Comparison
- Economic Analysis
- Results
- Summary and Outlook

Summary and Outlook

Summary

- Optimal cycle allocations can be determined using linear optimization
- However, due to the computing time, the algorithm is more usable
- In Krefeld, electric buses can be used economically if the specific battery prices fall below 480 € / kWh.

Outlook

- Further Potential: Breaking up and optimizing the cycles
- Intelligent charging management (electricity prices, control energy, charging load distribution)
- Impact of CO₂ pricing

Gladly ask questions and make comments!

Hochschule Niederrhein

University of Applied Sciences

SWK E²

Institut für Energietechnik und Energiemanagement

Institute of Energy Technology and Energy Management

Thank you for your attention!

References

- 1. Ahlswede, A.: Weltweite Preisentwicklung für Lithium-Ionen-Batterien von 2013 bis 2020, Statista, 2019. https://de.statista.com/statistik/daten/studie/534429/umfrage/weltweite-preise-fuer-lithium-ionen-akkus
- 2. Gurobi Optimization: Gurobi Optimizer 9.0. http://www.gurobi.com/download/gurobioptimizer
- 3. Hondius, H.: Was sparen Elektrobusse wirklich? Wirkungsgrade von Elektrobussen im Vergleich zu Dieselbussen vor dem Hintergrund der Konsequenzen der Energiewende. Der Nahverkehr, Vol. 32, No. 10, 2014, pp. 38-42.
- 4. Kunith, A.: Elektrifizierung des urbanen öffentlichen Busverkehrs, Springer Vieweg,2017. doi:10.1007/978-3-658-19347-8
- 5. Lehner, S., Rogge, M., Becker, J., Sauer, D.: Battery Design for Successful Electrification in Public Transport. Energies, Vol. 8, No. 7, 2015, pp. 6715-6737. doi:10.3390/en8076715
- 6. Mathworks: Intlinprog Mixed-integer linear programming (MILP). https://de.mathworks.com/help/optim/ug/intlinprog.html
- 7. Müller-Hellmann, A.: Stadtbahnen und Elektromobilität Ideen zu einer Symbiose. Der Nahverkehr, Vol. 30, No. 3, 2012, pp. 10-14.
- 8. Müller-Hellmann, A.: Vielfalt der Ladestrategien. Variationsmöglichkeiten von Betriebsweisen, Ladeverfahren und strategien für den Batteriebuseinsatz im ÖPNV. Der Nahverkehr, Vol. 36, Sonderheft Elektrobusse, 2018, pp. 9-12.
- 9. Seeliger, A., Jeschull S., Krönauer B., Limberg S., Schreiner C., Albuquerque C., de Souza M., Verza M.: Elektrobusse im ÖPNV, HS Niederrhein, 2016.
- 10. van Liemt, C.: Stadt Bingen Referenzstandort für Elektromobilität, Diplomica Verlag, 2018.
- 11. Verband Deutscher Verkehrsunternehmen (VDV): VDV Standardschnittstelle Liniennetz/Fahrplan, VDV-Schriften 2013.

Appendix

Appendix Parameters

Boundary Conditions

- charging: power, efficiency, start time
- power demand (traction, besides consumption, heating, cooling)
- desired temperature
- year temperature history
- depreciation periods
- level of investment
- specific weight of battery& passengers
- government subsidies
- energy prices: electricity& diesel
- timetable planning & cycles
- classification of day types to calendar days

Optimization Method

- identify the most suitable cycles per day and bus
- vary the battery specification of the bus types
- vary the number of the buses per types

Results

economically optimal:

- number of 12-meter electric buses
- number of 18-meter electric buses
- battery capacity of the 12-meter electric buses
- battery capacity of the 18-meter electric buses

Appendix Opportunity Charging vs. Overnight Charging

Overnight Charging: The full charging of the batteries in the night in the depot

- High flexibility of the bus
- High weight of the battery
- Range problem

Opportunity Charging: Charging the batteries in between stops at the cycle

- Smaller battery
- Investments in charging stations
- No range problem
- The charging times are important which must be respected

[8]

University of Applied Sciences

SWK E²

Institut für Energietechnik und Energiemanagement

Institute of Energy Technology and Energy Management

