A Machine Learning Approach to Demand Response Supply Estimation

Olvar Bergland Alan Love

School of Economic Sciences
Washington State University
and
School of Economics and Business
Norwegian University of Life Sciences

The 1st IAEE Online Conference
June 07–09, 2021
Energy System Transition

- The 3Ds
 - decarbonization
 - decentralization
 - digitalization

- Demand response among end-users
 - engage
 - activate
 - harness

- Contract design for demand response
 - consumption patterns
 - population heterogeneity
Outline

1. Background
2. Data (Verification)
3. Model
4. Results
5. Conclusion
Demand Response

- Load shifting/shedding
 - minimize impact on comfort
 - focus on (ultra) short-run
 - 5–15–30 minutes
 - repeated engagement

- Applications
 - managing local grid capacity constraints
 - bid demand flexibility into electricity markets
 - price spikes/black outs
Research Project

- Sloan Foundation Project: Bilateral Contract Design and Retail Market Development for Flexible Electric Power Systems with Residential Demand-side Participation
- WSU housed project
- WSU’s Energy System Innovation Center and Smart City Testbed.
 - integrated Energy/Distribution Management System
 - integrated with a complete city feeder model
- WSU’s Center for Institutional Research Computing (CIRC).
 - Kamiak condominium HPC
 - 3800+ CPU cores in 70+ computational nodes
Nonintrusive Usage Detection

- Utilize smart meter data
- Aggregate consumption in 5 minutes intervals
- Access to meter readings for some 16 000+ customers
- Model individual consumption patterns
- Want to detect HVAC/hot water heater usage
Project Outline

- Detect consumption patterns
- Estimate marginal WTP for load
- Map population/customer heterogeneity
- Construct demand response supply function
- Design contracts for demand response programs
- Assess impact on local grid conditions (WSU Smart City Testbed)
- Bundling for market interaction?
Outline

1 Background

2 Data (Verification)

3 Model

4 Results

5 Conclusion
Pecan Street Data
Pecan Street Data

- Pecan Street data:
 - publicly available data
 - 25 houses in Austin, TX

- Behind the meter readings
 - intrusive experimental setup
 - detailed information
 - 1-minute resolution

- Known usage

- Using for verification
Load and Temperature

- Temperature
- Total load
- Air condition
- Electric car

Time: 05:14 00 to 05:16 00
Load and HVAC

The graph shows the load and air condition over time. The y-axis represents the load in kW, ranging from 0 to 3.5. The x-axis represents the time, from 05-15 00 to 05-16 00. The graph includes two lines: one for total load and another for air condition. The total load line is represented by black color, while the air condition line is represented by blue color.
Outline
1 Background
2 Data (Verification)
3 Model
4 Results
5 Conclusion
Machine Learning

- Model individual household consumption patterns
- Large volumes of data
- Machine learning
 - statistics/mathematics
 - computer algorithms
- Econometrics
 - structural models
- Oxymoron: structural machine learning
Switching Regression

- Consumption data from meter readings, high time resolution
- Consumption depends on unobserved household activities
- Model activities as hidden states
- Activities change over time
 - transitions from state to state
- Model as time-varying hidden Markov model
 - Hamilton (1989) regime-switching article
 - Bengio and Frasconi (1996) input-output HMM
- Consumption is a switching (Tobit) regression model
Hidden Markov Model

\[
\begin{align*}
\cdots & \quad S_t & \quad S_{t+1} & \quad \cdots \\
& \quad \Pr(S_{t+1}|S_t) & \\
& \quad \Pr(y_t|S_t) & \quad \Pr(y_{t+1}|S_{t+1}) \\
\cdots & \quad y_t & \quad y_{t+1} & \quad \cdots
\end{align*}
\]
Output Hidden Markov Model (switching regression model)

\[S_t \quad \xrightarrow{\text{Pr}(S_{t+1}|S_t)} \quad S_{t+1} \]

\[\xrightarrow{\text{Pr}(y_t|S_t, x_t)} \quad y_t \quad \xrightarrow{\text{Pr}(y_{t+1}|S_{t+1}, x_{t+1})} \quad y_{t+1} \]

\[\xrightarrow{\text{Pr}(X_t)} \quad X_t \quad \xrightarrow{\text{Pr}(X_{t+1})} \quad X_{t+1} \]
Input-Output Hidden Markov Model

The diagram illustrates a Hidden Markov Model (HMM) with the following components:

- **States (S)**: s_t, s_{t+1}, z_t, z_{t+1}
- **Observations (y)**: y_t, y_{t+1}
- **Inputs (x)**: x_t, x_{t+1}

Where:

- $\Pr(y_t | s_t, x_t)$
- $\Pr(y_{t+1} | s_{t+1}, x_{t+1})$
- $\Pr(s_{t+1} | s_t, z_t)$

The model transitions from state s_t to s_{t+1} with probabilities $\Pr(s_{t+1} | s_t, z_t)$, and from state s_t to y_t with probabilities $\Pr(y_t | s_t, x_t)$.
Model Estimation

- Input-output Hidden Markov Model
- Observed consumption: Tobit model
- State transition probabilities: multinominal logit
- Joint estimation of all parameters
 - EM algorithm (Baum-Welch)
 - Custom code in Python
 - Using WSU Kamiak HPC cluster system
Transition Probabilities
EM Estimator

E step

HMM

M step

Transition probabilities
- state 1 (MNL)
- state 2 (MNL)
-
- state n (MNL)

Consumption Function
- state 1 (Tobit)
- state 2 (Tobit)
-
- state n (Tobit)
Python Code

- Object based
- Vectorized
- Modular
 - RegModel
 - Tobit
 - multinominal logit
 - HiddenMarkovModels
 - static transition matrix
 - variable transition matrix
 - TobitIOModel
Outline

1. Background
2. Data (Verification)
3. Model
4. Results
5. Conclusion
Predicted Consumption

- Pecan Street data: 24 houses
- Focus on summer months (200 000 obs)
- Typically 6–8 states sufficient
- Get predicted consumption \hat{y}_t^s
- Get predicted probabilities $\hat{\pi}_t^s$
- Averaged prediction
 \[\hat{y}_t = \sum_s \hat{\pi}_t^s \hat{y}_t^s \]
- Substantial improvement in prediction
Load Prediction

[Graph showing load prediction over time]

- Total load
- Predicted load

Bergland and Love (WSU) Demand Response Estimation
State Predictions

- AC states are clearly identifiable (for 22 houses)
 - 3–5 “AC” states
 - Captures 90-97% of all true AC states
 - Tracks actual load very well

- Identification of AC states
 - decision trees
 - estimated using “Random Forest”
State Predictions

[Graphs showing load, state, and probability over time]
Revealed Valuation

- Take state r away in period t
- Get new predicted probabilities $\tilde{\pi}_t^s$
- Averaged prediction

$$\tilde{y}_t = \sum_{s \neq r} \tilde{\pi}_t^s \hat{y}_t^s$$

- Change in load is

$$\Delta y_t^{-r} = \hat{y}_t - \tilde{y}_t$$

- Revealed choices thus implicit valuation
- Estimated as a probit model
Predicted Demand Response

- Consider a situation: \((z, x)\)
- Predict probability of states (limiting distribution of MC)
- Predict quantities (Tobit)
- Predict probability of AC “on”
- Predict expected AC (controllable) load
- Predict valuation of load
- Repeat for \(n\) households
- Results in a demand resolution supply curve
AC “on” Probability

![Graph showing the probability of AC being on as a function of temperature (°F). The probability increases as the temperature increases.](image-url)
Expected AC Load
Expected Demand Response Curve
Conclusions

- Smart meter data is an emerging data source
- IOHMM can be used to detect consumption patterns
- Provides a foundation for
 - estimating demand response supply functions
 - designing contracts
 - identifying potential participants
- Know your customers, i.e. tailored products