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Energy System Transition

@ The 3Ds

» decarbonization
» decentralization
» digitalization
@ Demand response among end-users
> engage
» activate
» harness
@ Contract design for demand response

» consumption patterns
» population heterogeneity
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Demand Response

@ Load shifting/shedding
» minimize impact on comfort
» focus on (ultra) short-run
* 5-15-30 minutes
* repeated engagement
@ Applications
» managing local grid capacity constraints
» bid demand flexibility into electricity markets
» price spikes/black outs
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Research Project

@ Sloan Foundation Project:
Bilateral Contract Design and Retail Market Development for Flexible Electric Power
Systems with Residential Demand-side Participation

@ WSU housed project

@ WSU’s Energy System Innovation Center and Smart City Testbed.

» integrated Energy/Distribution Management System
» integrated with a complete city feeder model

@ WSU'’s Center for Institutional Research Computing (CIRC).

» Kamiak condominium HPC
» 3800+ CPU cores in 70+ computational nodes
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Nonintrusive Usage Detection

@ Utilize smart meter data

@ Aggregate consumptionin 5 minutes intervals

@ Access to meter readings for some 16 000+ customers
@ Model individual consumption patterns

@ Want to detect HVAC/hot water heater usage
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Project Outline

@ Detect consumption patterns

Estimate marginal WTP for load

Map population/customer heterogeneity

Construct demand response supply function

Design contracts for demand response programs

Assess impact on local grid conditions (WSU Smart City Testbed)

Bundling for market interaction?
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Pecan Street Data
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Pecan Street Data

@ Pecan Street data:

» publicly available data
» 25 housesin Austin, TX

@ Behind the meter readings

» intrusive experimental setup
» detailed information
» 1-minute resolution

@ Known usage
@ Using for verification
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Load and Temperature
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Load and HVAC
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Machine Learning

Model individual household consumption patterns

Large volumes of data
Machine learning

» statistics/mathematics
» computer algorithms

Econometrics
» structural models

@ Oxymoron: structural machine learning
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Switching Regression

Consumption data from meter readings, high time resolution
Consumption depends on unobserved household activities
Model activities as hidden states
Activities change over time

» transitions from state to state

Model as time-varying hidden Markov model

» Hamilton (1989) regime-switching article
» Bengio and Frasconi (1996) input-output HMM

Consumption is a switching (Tobit) regression model
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Hidden Markov Model
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Output Hidden Markov Model (switching regression model)
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Input-Output Hidden Markov Model
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Model Estimation

@ Input-output Hidden Markov Model
@ Observed consumption: Tobit model
@ State transition probabilities: multinominal logit

@ Joint estimation of all parameters

» EM algorithm (Baum-Welch)
» Custom code in Python
» Using WSU Kamiak HPC cluster system
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Transition Probabilities
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EM Estimator
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Python Code

@ Object based

@ Vectorized

@ Modular
» RegModel

* Tobit
* multinominal logit

» HiddenMarkovModels

* static transition matrix
* variable transition matrix

» TobitIOModel
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Predicted Consumption

@ Pecan Street data: 24 houses
@ Focus on summer months (200 000 obs)
@ Typically 6-8 states sufficient
@ Get predicted consumption y;
@ Get predicted probabilities 7t
@ Averaged prediction
Vo= A
S

@ Substantial improvement in prediction
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Load Prediction
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State Predictions

@ AC states are clearly identifiable (for 22 houses)

» 3-5°“AC" states
» Captures 90-97% of all true AC states
» Tracks actual load very well

@ Indentification of AC states

» decision trees
» estimated using “Random Forest”
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State Predictions
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Revealed Valuation

@ Take state r away in period t
@ Get new predicted probabilities 7t}
@ Averaged prediction

o= o
S#£r
@ Changeinloadis
Ay =V — Vit

@ Revealed choices thus implicit valuation
@ Estimated as a probit model
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Predicted Demand Response

@ Consider asituation: (z, x)
@ Predict probability of states (limiting distribution of MC)

Predict quantities (Tobit)

Predict probability of AC “on”

Predict expected AC (controllable) load
Predict valuation of load

Repeat for n households

Results in a demand resolution supply curve
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AC “on” Probability
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Expected AC Load
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Expected Demand Response Curve
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Conclusions

@ Smart meter data is an emerging data source
@ IOHMM can be used to detect consumption patterns

@ Provides a foundation for

» estimating demand response supply functions
» designing contracts
» identifying potential participants

@ Know your customers, i.e. tailored products
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