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Energy System Transition
The 3Ds

I decarbonization
I decentralization
I digitalization

Demand response among end-users
I engage
I activate
I harness

Contract design for demand response
I consumption patterns
I population heterogeneity
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Demand Response
Load shifting/shedding

I minimize impact on comfort
I focus on (ultra) short-run

F 5–15–30minutes
F repeated engagement

Applications
I managing local grid capacity constraints
I bid demand flexibility into electricity markets
I price spikes/black outs
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Research Project
Sloan Foundation Project:
Bilateral Contract Design and Retail Market Development for Flexible Electric Power
Systemswith Residential Demand-side Participation
WSU housed project
WSU’s Energy System Innovation Center and Smart City Testbed.

I integrated Energy/DistributionManagement System
I integrated with a complete city feeder model

WSU’s Center for Institutional Research Computing (CIRC).
I Kamiak condominiumHPC
I 3800+ CPU cores in 70+ computational nodes
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Nonintrusive Usage Detection
Utilize smart meter data
Aggregate consumption in 5minutes intervals
Access tometer readings for some 16 000+ customers
Model individual consumption patterns
Want to detect HVAC/hot water heater usage
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Project Outline
Detect consumption patterns
EstimatemarginalWTP for load
Map population/customer heterogeneity
Construct demand response supply function
Design contracts for demand response programs
Assess impact on local grid conditions (WSU Smart City Testbed)
Bundling for market interaction?
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Pecan Street Data
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Pecan Street Data
Pecan Street data:

I publicly available data
I 25 houses in Austin, TX

Behind themeter readings
I intrusive experimental setup
I detailed information
I 1-minute resolution

Known usage
Using for verification
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Load and Temperature
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Load andHVAC
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Machine Learning
Model individual household consumption patterns
Large volumes of data
Machine learning

I statistics/mathematics
I computer algorithms

Econometrics
I structural models

Oxymoron: structural machine learning

Bergland and Love (WSU) Demand Response Estimation IAEE, 2021 14 / 34



Switching Regression
Consumption data frommeter readings, high time resolution
Consumption depends on unobserved household activities
Model activities as hidden states
Activities change over time

I transitions from state to state
Model as time-varying hiddenMarkovmodel

I Hamilton (1989) regime-switching article
I Bengio and Frasconi (1996) input-output HMM

Consumption is a switching (Tobit) regressionmodel
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HiddenMarkovModel
· · · St St+1 · · ·

yt yt+1

Pr(yt|St) Pr(yt+1|St+1)

Pr(St+1|St)
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Output HiddenMarkovModel (switching regressionmodel)
· · · St St+1 · · ·

yt yt+1

xt xt+1

Pr(yt|St, xt) Pr(yt+1|St+1, xt+1)

Pr(St+1|St)
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Input-Output HiddenMarkovModel

· · · St St+1 · · ·

yt yt+1

xt xt+1

zt zt+1

Pr(yt|St, xt) Pr(yt+1|St+1, xt+1)

Pr(St+1|St, zt)
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Model Estimation
Input-output HiddenMarkovModel
Observed consumption: Tobit model
State transition probabilities: multinominal logit
Joint estimation of all parameters

I EM algorithm (Baum-Welch)
I Custom code in Python
I UsingWSUKamiak HPC cluster system
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Transition Probabilities
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EMEstimator
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Python Code
Object based
Vectorized
Modular

I RegModel
F Tobit
F multinominal logit

I HiddenMarkovModels
F static transitionmatrix
F variable transitionmatrix

I TobitIOModel
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Predicted Consumption
Pecan Street data: 24 houses
Focus on summermonths (200 000 obs)
Typically 6–8 states sufficient
Get predicted consumption ŷst
Get predicted probabilities π̂st
Averaged prediction

ŷt =
∑
s

π̂st ŷst

Substantial improvement in prediction
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Load Prediction
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State Predictions
AC states are clearly identifiable (for 22 houses)

I 3–5 “AC” states
I Captures 90-97% of all true AC states
I Tracks actual load very well

Indentification of AC states
I decision trees
I estimated using “Random Forest”
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State Predictions
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Revealed Valuation
Take state r away in period t
Get new predicted probabilities π̃st
Averaged prediction

ỹt =
∑
s6=r

π̃st ŷst

Change in load is
∆y−r

t = ŷt − ỹt
Revealed choices thus implicit valuation
Estimated as a probit model
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Predicted Demand Response
Consider a situation: (z, x)
Predict probability of states (limiting distribution ofMC)
Predict quantities (Tobit)
Predict probability of AC “on”
Predict expected AC (controllable) load
Predict valuation of load
Repeat for n households
Results in a demand resolution supply curve
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AC “on” Probability
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Expected AC Load
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Expected Demand Response Curve
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Conclusions
Smart meter data is an emerging data source
IOHMMcan be used to detect consumption patterns
Provides a foundation for

I estimating demand response supply functions
I designing contracts
I identifying potential participants

Know your customers, i.e. tailored products
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