Introduction Method Results Discussion and Future we 0000000 000 000000 0000

1st IAEE Online Conference 2021

Energy Intensity and CO2 emissions India's progress towards energy and climate change mitigation goals

Manisha Jain

Indira Gandhi Institute of Development Research

June 07, 2021

Energy Intensity and CO2 emissions

э

Introduction	Method	Results	Discussion and Future work
000000	000	0000000	0000

Manisha Jain

Introduction	Method	Results	Discussion and Future work
000000	000	0000000	0000

1 Introduction

2 Method

3 Results

4 Discussion and Future work

Manisha Jain Energy Intensity and CO2 emissions

- Per capita energy consumption 0.6 toe/capita
- 21% of primary energy supply from non-commercial energy sources
- 95% of commercial primary energy supply from fossil fuels
- 56% from coal, 35% from oil and 7% from natural gas
- Hydro-2%, nuclear-1% and other RE(solar and wind)-1%

(日) (四) (王) (王) (王)

- Appliances information through appliance labels, minimum efficiency performance standards to remove inefficient products and gradual strengthening of standards
- Industry information through mandatory energy audits, mandatory targets to reduce specific energy consumption, trading of energy saving certificates to meet targets (Perform-Achieve-Trade); information and financing for small and medium enterprises
- Agriculture and Municipal services mandatory energy audits, demand side management programs for lighting and pumping
- Building Codes setting minimum performance standards
- Transport Vehicle efficiency standards, hybrid/electric vehicle

Manisha Jain

- Field Measurements expensive/infeasible for large projects, additional costs
- Engineering estimates Overestimation of savings, rebound effect other behavioural changes are neglected
- Model based studies Dependence on assumptions
- Index decomposition Analysis ex-post analysis, effect of policies cannot be isolated

글 > - < 글 >

Some estimates of savings from energy efficiency programs

Sector	Energy saved	Avoided capacity	Emission reduction
Industry (2012-15)	8.67 mtoe		31 MtCO2
Agriculture (2012-17)	2.3 mtoe		
Municipal (2012-17)		52 MW	
Appliances (2012-17)		22990 MW	

э

Manisha Jain	IGIDR
Energy Intensity and CO2 emissions	8 / 24

Introduction	Method	Results	Discussion and Future work
000000●	000	0000000	
Research objective	s		

- Estimate the drivers of India's CO2 emission
- Quantify the effects of economic growth, economic structural changes, energy intensity and carbon intensity of energy in the change in emissions
- Compare the estimates of emission reduction from the energy intensity effect of production sectors with official estimates

Introduction	Method	Results	Discussion and Future work
000000	•00	0000000	0000

1 Introduction

Manisha Jain

4 Discussion and Future work

< ≣⇒ э. -IGIDR Energy Intensity and CO2 emissions 10 / 24

 Introduction
 Method oo
 Results oo
 Discussion and Future work ooo

 Extended Kaya Identity and Index decomposition analysis

CO2 emission in year t, i is the production sectors

Change in CO2 emission from year 0 to t

 $\Delta CO2 = CO2_t - CO2_0 = \Delta CO2_{AE} + \Delta CO2_{SE} + \Delta CO2_{SEI} + \Delta CO2_{CI}$ (2)

Effect of a factor, say EI is

$$\Delta CO2_{EI} = \sum_{i} \frac{CO2_{iT} - CO2_{i0}}{\ln CO2_{iT} - \ln CV_{i0}} \times \ln(\frac{EI_{it}}{EI_{i0}})$$
(3)

Manisha Jain	IGIDR
Energy Intensity and CO2 emissions	11 / 24

- Final energy consumption by sectors for 2000-18 from International Energy Agency
- Three production sectors industry, agriculture and allied and commercial and services; transport and residential are excluded
- CO2 emissions by sectors using IPCC methdology
- Gross value added by production sector in constant monetary units from official estimates

Introduction	Method	Results	Discussion and Future work
000000	000	•0000000	0000

1 Introduction

2 Method

4 Discussion and Future work

< □ ▷ < @ ▷ < 분 ▷ < 분 ▷ 2 < ⊙ Q(IGIDR 13 / 24

Energy Intensity and CO2 emissions

Manisha Jain

14 / 24

15 / 24

- Activity effect
 - Key driver of India's CO2 emissions
 - Gradually increased over time
 - 38 MtCO2/year during 2000-05 to 91 MtCO2/year during 2015-18
- Economy structure effect
 - There is a shift from agriculture to industry during 2000-10; net effect is negligible
 - During 2010-18 the shift is towards services sector resulting in negative effect on emissions 12 Mt/year

イロト イポト イヨト イヨト

- Sector-energy intensity effect
 - Pushed the emissions downwards by 17 MtCO2/year during 2000-05
 - During 2005-10 caused increase in the emissions at similar rate
 - Again began pushing emissions downward and at a much higher rate during 2015-18 mainly from industries; effect of agriculture sector is positive

< <p>Image: Image: Imag

-

- CO2 intensity effect
 - Negligible effects in most years
 - Marginal decline since 2015

Introduction	Method	Results	Discussion and Future work
000000	000	0000000	0000

1 Introduction

2 Method

4 Discussion and Future work

Manisha Jain Energy Intensity and CO2 emissions

Introduction	Method	Results	Discussion and Future work
0000000	000	00000000	○●○○
Discussion			

- Sector-energy intensity effect of industries
 - Includes the effect of energy efficiency and shifts towards or away from energy intensive industries
 - Emission reduction of 60 MtCO2 during 2012-15
 - Greater than the official estimates of emission reduction (31 MtCO2)
- Sector-energy intensity effect of agriculture and allied sector
 - Includes the effect of energy efficiency and shifts within the agriculture sector
 - Emission increase of 8 MtCO2 during 2012-17; official estimates show reduction in emissions

Introduction	Method	Results	Discussion and Future work
0000000	000	00000000	
Future work			

- Compare with estimates from official energy data
- Compare with other studies estimating energy savings and emissions reduction from energy efficient technologies
- Quantify effect of structural changes within industrial sector
- Include transport and residential sectors in analysis

프 > > = >

Introduction	Method	Results	Discussion and Future work
000000	000	0000000	0000

Thank you for your attention! Comments, suggestions and observations are welcome!

- ● 臣 → - -

3

IGIDR

24 / 24

Image: Image:

Manisha Jain Energy Intensity and CO2 emissions