

Motivation

Motivation Contd.

Solution: Decarbonise electricity sector (Bertsch et al., 2016)

Renewable energy sources e.g., Solar, Wind

Research Question

What is the effect of electricity price and carbon price on low-carbon investment decisions in the context of UK Electricity Grid?

Related Literature

Simulation model

Solar and wind with gas

Ignoring electricity network

(Deetjen et al., 2018; Liu et al., 2018)

Solar and wind with static grid network

(Schlott et al., 2018; Zou et al., 2018)

Electricity grid network (resilience), with no renewable concerns

(Espejo et al., 2018; Azzolin et al., 2018; Kim et al., 2017)

- Firm-level low carbon investment decisions(fuel and carbon prices): Kraan, Kramer and Nikolic (2018), Flora and Vargiolu (2020) and Barazza and Strachan (2020)
- This paper extends: Flora and Vargiolu (2020) by examining the effect of electricity, fuel and carbon prices on low-carbon investment decisions in the UK intra-country real grid network.
- ☐ The main contributions:
 - UK real electricity network topology on the choices of adopting generation technologies

Price Dynamics of Low Carbon Investment in The IIV Floatricity Transmission Grid INFF2021

applies a technique that combine both network and agent-based methods based on empirical datasets (ENTSO-E, BEIS, National Grid, DUKES etc.)

Approaches

Constructing the UK Electricity Grid

- How? Using the European Network Transmission System Operator for Electricity(ENTSO-E) Grid Map
- Properties of nodes (plants and substations): capacity(MW) and generation type(ENTSOE); operation year etc (BEIS)
- Properties of link (Transmission lines): Voltage (ENTSOE)

Incorporating the Grid into Agent-based platform(Netlogo)

• Information used to setup the model: capacify factor, fuel efficiency, capital cost, operating cost, electricity price, fuel price, carbon price, discount rate, lifetime etc. (Source: UK National Grid, BEIS, literature, etc)

Steps for UK Low-Carbon Investment Simulation

Start

- Import electricity grid network
- Turtles (power plant and substations)
- Links (transmission lines)

NPV

- Inputs used to calculate this:
- Exogeneous inputs: Plant lifetime; capacity; capacity factor; efficienncy, electricity price, capital cost; operating cost; discount rate
- Endogenous inputs: electricity ouput; fuel consumption; carbon emission

Decision rules

 Remove plant if NPV < 0 and highest negative NPV

 Choose new plant: NPV > 0 and highest positive NPV

CF =

$$\sum_{y=t}^{n} \frac{(ep_{p,t} \times p_{exp,t}) - ((VC_{f,c,p,t} \times ep_{p,t}) + fc_{p,t})}{(1+r)^{y}}$$

Net present value(NPV)

Operating cash-flow(CF) is

$$NPV = CF - \left(\frac{CAPEX_{p,t}}{l_p} \times n\right)$$

Outcomes

- i. Electricity generation technology mix
 - ii. Renewable electricity penetration

iii. CO2 emissions

iv, total investment

v. Share of investment by technology type

Procedures for developing the UK low-carbon investment simulation model

Procedure name	Features	Input/parameters used
Setup	- Loading the grid network into the model	- Installed capacity, year of operation are input variables in this
	- Assign attributes to power plants and substations	procedure.
	- Adding new attributes such as shape, size, age, colour	- Parameters such as capital-cost, capacity factor, exchange rate are
	- Computing variables such as electricity generation, investment cost etc.	utilized.
SetupRevenue	- This is a subset of Setup procedure to calculate revenue per plant	- It uses electricity price and electricity generation to obtain the revenue
		- Electricity price is an exogenous input variable while generation is obtained in the model Setup
Setuptot.fuelcost	- This is a subset of Setup procedure to calculate fuel cost for coal, gas, and nuclear	- This utilises fuel-used variable derived from electricity generation by
	power plants	multiplying with parameters such as fuel efficiency and fuel price variable
SetupCarbon-emissions	- A Setup subset that calculates total carbon emissions	- carbon-intensity parameter and fuel used variable
SetupCarbon-cost	- A Setup subset that calculates value of total carbon emissions	- multiplies total carbon emissions with exogenous carbon price
SetupOperCost	- This subset calculates the total operating cost for each plant	- parameters such as fixed and variable operation and maintenance
		cost complemented with installed capacity and electricity generation
Setupprofit	- This procedure calculates the operating profit for each plant	- It subtracts total operating cost from revenue
CalculateNPV	- This procedure computes the net present value of each plant	- It applies parameters such as interest rate and economic lifetime on
		the operating profit
do-layout	- This procedure allows us to adjust the grid network layout	- It adjusts the layout connecting nodes(power plants and substations)
		and link(transmission lines)
go	- This procedure allows to implement investment decision rules	- Remove power plants with NPV less or equal zero
		- Replace the removed power plants with new ones that take attributes
		from the highest NPV plant in the network
		- With underlying assumption that new plants maintain the same
		installed capacity and links of the removed plants.
Price Dynamics of Low Carbon Inve	stment in The UK Electricity Transmission Grid IAEE2021	

Simulation model operation

Simulation periods (Yearly resolution): 30 years (2020-2050)

- Setup: based on previous years information to obtain operating profit at the initial year
- Assumption: Fixed(installed capacity, capacity factor, capital cost etc.)

Investment decision rules to run the model

Interface of the UK low-carbon electricity investment model

	Statistical
	Properties
Number of Nodes	465
Number of Transmission Lines	357
Average Degree	1.535
Average Weighted Degree	1.535
Network Diameter	31
Graph Density	0.003
Connected Components	202
Average Clustering Coefficient	0.119
Average Path Length	11.478

Baseline result

UK ELECTRICITY-RELATED CO2 EMISSIONS(TONS) 2020-2050

Results(+NZ targets)

2024 phase-out coal

2030 phase-out nuclear(except 2)

UK ELECTRICITY MIX 2020-2050

UK ELECTRICITY-RELATED CO2 EMISSIONS(TONS) 2020-2050

Results

(price, price + NZ targets)

HIGH ELECTRICITY PRICE (£65/MWH) VS HIGH CARBON PRICE(£200/T)

PRICE(LHP) + POLICY TARGETS VS HIGH PRICE(HPP) + POLICY TARGETS

Conclusions

Fills the research gap between electricity grid network and low-carbon electricity investment decisions in the UK context

Findings:

- All coal plants exit before 2022 in the absence of government intervention; high electricity price (2050 nuclear-gas-hydro mix); high carbon price (2050 wind-gas-hydro mix)
- LHP + NZ targets leads 2050 wind-gas-hydro mix; HPP + NZ targets leads to nuclear-gas-hydro mix before 2030, and 100% wind after 2030

THANK YOU

- I The UK net-zero policy targets into the model
- □ Policy targets
- 2050 100% Carbon emission reduction
- 2030 40GW of offshore wind (e.g. through CfD)
- 2024 coal phase out
- 2030 end all nuclear generation with the exception of Sizewell B & Hinkley Point C
- Aggregate electricity demand could be double out to 2050 due to electrification of cars and vans; and increased use of clean electricity for heating instead of gas
- No particular generation mix of 2050; no plan for any specific technology solution; the future generation mix could be composed of wind and solar
- Carbon pricing: the UK new Emission Trading Scheme (UK ETS) is up & running by January 2021. Change in emission caps and sectors