DYNAMIC MECHANISMS OF LOW-CARBON INVESTMENT DECISIONS IN THE UK ELECTRICITY GRID NETWORK

SAHEED BELLO & DUNCAN ROBERTSON

SCHOOL OF BUSINESS AND ECONOMICS
LOUGHBOROUGH UNIVERSITY

IAEE CONFERENCE, 8 JUNE 2021
CONTENT

MOTIVATION

RELATED LITERATURE

SIMULATION MODEL

RESULTS

CONCLUSION
Motivation Contd.

Greenhouse gases (GHGs) emissions - 80% global warming (United Nations, 2017)

Electricity-related CO₂ emissions constitute the largest (IPCC, 2014)

Solution: Decarbonise electricity sector (Bertsch et al., 2016)

Renewable energy sources e.g., Solar, Wind
Research Question

What is the effect of electricity price and carbon price on low-carbon investment decisions in the context of UK Electricity Grid?

This paper extends: Flora and Vargiolu (2020) by examining the effect of electricity, fuel and carbon prices on low-carbon investment decisions in the UK intra-country real grid network.

The main contributions:

- UK real electricity network topology on the choices of adopting generation technologies
- Applies a technique that combine both network and agent-based methods based on empirical datasets (ENTSO-E, BEIS, National Grid, DUKES etc.)
Approaches

Constructing the UK Electricity Grid

- Properties of nodes (plants and substations): capacity (MW) and generation type (ENTSOE); operation year etc (BEIS)
- Properties of link (Transmission lines): Voltage (ENTSOE)

Incorporating the Grid into Agent-based platform (Netlogo)

- Information used to setup the model: capacify factor, fuel efficiency, capital cost, operating cost, electricity price, fuel price, carbon price, discount rate, lifetime etc. (Source: UK National Grid, BEIS, literature, etc)
Price Dynamics of Low Carbon Investment in The UK Electricity Transmission Grid_IAEE 2021

Steps for UK Low-Carbon Investment Simulation

- Import electricity grid network
- Turtles (power plant and substations)
- Links (transmission lines)

NPV

- Inputs used to calculate this:
 - Exogeneous inputs: Plant lifetime; capacity; capacity factor; efficiency, electricity price, capital cost; operating cost; discount rate
 - Endogenous inputs: electricity output; fuel consumption; carbon emission

Decision rules

- Remove plant if NPV < 0 and highest negative NPV
- Choose new plant: NPV > 0 and highest positive NPV

Outcomes

i. Electricity generation technology mix
ii. Renewable electricity penetration
iii. CO2 emissions
iv. Total investment
v. Share of investment by technology type

Operating cash-flow (CF) is

\[
CF = \sum_{y=t}^{n} \frac{(epp_{t} \times p_{exp}) - ((VC_{f,c,p,t} \times epp_{t}) + f_{c,p,t})}{(1+r)^{y}}
\]

Net present value (NPV)

\[
NPV = CF - \left(\frac{CAPEX_{p,t}}{l_{p}} \times n\right)
\]
<table>
<thead>
<tr>
<th>Procedure name</th>
<th>Features</th>
<th>Input/parameters used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>- Loading the grid network into the model</td>
<td>- Installed capacity, year of operation are input variables in this procedure.</td>
</tr>
<tr>
<td></td>
<td>- Assign attributes to power plants and substations</td>
<td>- Parameters such as capital-cost, capacity factor, exchange rate are utilised.</td>
</tr>
<tr>
<td></td>
<td>- Adding new attributes such as shape, size, age, colour</td>
<td>- Computing variables such as electricity generation, investment cost etc.</td>
</tr>
<tr>
<td></td>
<td>- Computing variables such as electricity generation, investment cost etc.</td>
<td></td>
</tr>
<tr>
<td>SetupRevenue</td>
<td>- This is a subset of Setup procedure to calculate revenue per plant</td>
<td>- It uses electricity price and electricity generation to obtain the revenue.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Electricity price is an exogenous input variable while generation is obtained in the model Setup</td>
</tr>
<tr>
<td>SetupTot.fuelcost</td>
<td>- This is a subset of Setup procedure to calculate fuel cost for coal, gas, and nuclear power plants</td>
<td>- This utilises fuel-used variable derived from electricity generation by multiplying with parameters such as fuel efficiency and fuel price variable</td>
</tr>
<tr>
<td>SetupCarbon-emissions</td>
<td>- A Setup subset that calculates total carbon emissions</td>
<td>- carbon-intensity parameter and fuel used variable</td>
</tr>
<tr>
<td>SetupCarbon-cost</td>
<td>- A Setup subset that calculates value of total carbon emissions</td>
<td>- multiplies total carbon emissions with exogenous carbon price</td>
</tr>
<tr>
<td>SetupOperCost</td>
<td>- This subset calculates the total operating cost for each plant</td>
<td>- parameters such as fixed and variable operation and maintenance cost complemented with installed capacity and electricity generation</td>
</tr>
<tr>
<td>Setupprofit</td>
<td>- This procedure calculates the operating profit for each plant</td>
<td>- It subtracts total operating cost from revenue</td>
</tr>
<tr>
<td>CalculateNPV</td>
<td>- This procedure computes the net present value of each plant</td>
<td>- It applies parameters such as interest rate and economic lifetime on the operating profit</td>
</tr>
<tr>
<td>do-layout</td>
<td>- This procedure allows us to adjust the grid network layout</td>
<td>- It adjusts the layout connecting nodes(power plants and substations) and link(transmission lines)</td>
</tr>
<tr>
<td>go</td>
<td>- This procedure allows to implement investment decision rules</td>
<td>- Remove power plants with NPV less or equal zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Replace the removed power plants with new ones that take attributes from the highest NPV plant in the network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- With underlying assumption that new plants maintain the same installed capacity and links of the removed plants.</td>
</tr>
</tbody>
</table>
Simulation model

Simulation periods (Yearly resolution): 30 years (2020-2050)

- Setup: based on previous years information to obtain operating profit at the initial year
- Assumption: Fixed (installed capacity, capacity factor, capital cost etc.)

Investment decision rules to run the model

- Import electricity grid network
- Turtles (power plant and substations)
- Links (transmission lines)

NPV

Inputs used to calculate this:

- Exogeneous inputs: Plant lifetime; capacity; capacity factor; efficiency, electricity price, capital cost; operating cost; discount rate
- Endogenous inputs: electricity output; fuel consumption; carbon emission

Decision rules

- Remove plant if NPV < 0 and highest negative NPV
- Choose new plant: NPV > 0 and highest positive NPV

Outcomes

i. Electricity generation technology mix
ii. Renewable electricity penetration
iii. CO2 emissions
iv. Total investment
v. Share of investment by technology type
Interface of the UK low-carbon electricity investment model

Statistical Properties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Nodes</td>
<td>465</td>
</tr>
<tr>
<td>Number of Transmission Lines</td>
<td>357</td>
</tr>
<tr>
<td>Average Degree</td>
<td>1.535</td>
</tr>
<tr>
<td>Average Weighted Degree</td>
<td>1.535</td>
</tr>
<tr>
<td>Network Diameter</td>
<td>31</td>
</tr>
<tr>
<td>Graph Density</td>
<td>0.003</td>
</tr>
<tr>
<td>Connected Components</td>
<td>202</td>
</tr>
<tr>
<td>Average Clustering Coefficient</td>
<td>0.119</td>
</tr>
<tr>
<td>Average Path Length</td>
<td>11.478</td>
</tr>
</tbody>
</table>
Baseline result
• **Results (+NZ targets)**

 2024 phase-out coal

 2030 phase-out nuclear (except 2)
Results

(price, price + NZ targets)
Conclusions

- Fills the research gap between electricity grid network and low-carbon electricity investment decisions in the UK context

Findings:

- All coal plants exit before 2022 in the absence of government intervention; high electricity price (2050 nuclear-gas-hydro mix); high carbon price (2050 wind-gas-hydro mix)
- LHP + NZ targets leads 2050 wind-gas-hydro mix; HPP + NZ targets leads to nuclear-gas-hydro mix before 2030, and 100% wind after 2030
THANK YOU
I The UK net-zero policy targets into the model

Policy targets

• 2050 100% Carbon emission reduction
• 2030 40GW of offshore wind (e.g. through CfD)
• 2024 coal phase out
• 2030 end all nuclear generation with the exception of Sizewell B & Hinkley Point C
• Aggregate electricity demand could be double out to 2050 due to electrification of cars and vans; and increased use of clean electricity for heating instead of gas
• No particular generation mix of 2050; no plan for any specific technology solution; the future generation mix could be composed of wind and solar
• Carbon pricing: the UK new Emission Trading Scheme (UK ETS) is up & running by January 2021. Change in emission caps and sectors