Forecast of High Frequency Energy Data Based on Machine Learning Applications

1st IAEE Online Conference

Concurrent Session 75: Market Modeling

Erik Heilmann University of Kassel Chair for Energy Economics Erik.Heilmann@uni-kassel.de +49 561- 804 7175

U N I K A S S E L V E R S I T A T Co authors: Janosch Henze Heike Wetzel

Structure

Part 1: Machine Learning (ML) in energy economics

Part 2: Exemplary application

- Motivation
- What is , Machine Learning'?
- Modeling process of ML
- Application on energy demand data
- Case study setting
- Selected forecast approaches
- Results and Discussion
- Conclusion

Motivation – Forecasts in Energy Economics

UNIKASSEL VERSITÄT

- Classical short-term forecasts' tasks:
 - Optimal scheduling of energy plants.
 - Network operation tasks.
 - Price indications for optimal marketing.
 - ...
- Classical long-term forecasts' tasks:
 - Analysis of different energy sectors and peak demands to design future energy supply and networks.
 - Identification of strategies for energy efficiency enhancements and decreasing greenhouse gas emissions.
 - Giving the basis for policy decision-making.

• ...

- New use cases (e.g. local balancing of electricity) require forecasts with a high temporal and local resolution.
- Machine Learning (ML) techniques can provide forecasts based on big amount of data
 → state-of-the-art in technical oriented literature, but not in economic oriented literature.

What is ,Machine Learning'?

- No general definition in the literature.
- Main characteristics of a ML model:
 - It is based on some experience and therefore datadriven.
 - it gets trained on a specific task that can be measured by some performance measure (for example an error term). The performance, in general, improves with the quantity of appropriate experience.
- Most common model tasks are **prediction**, classification and clustering.
- Data can be **labeled** or unlabeled.

Modeling process of ML models

NIKASSEL

Application on Energy Demand Data

U N I K A S S E L V E R S I T 'A' T

- Model task = prediction
- Target data = energy demand
- Input data:
 - (past) Energy demand
 - Time stamp
 - Weather (\rightarrow separate forecasts needed)
 - ... any explanatory data
- Forecast horizon?
 - Static forecast for the next time step
 - Dynamic forecast for the next n time steps (using own prediction as inputs)

Exemplary static vs. dynamic prediction

Structure

Part 1: Machine Learning (ML) in energy economics

Part 2: Exemplary application

- Motivation
- What is ,Machine Learning'?
- Modeling process of ML
- Application on energy demand data
- Case study setting
- Selected forecast approaches
- Results and Discussion
- Conclusion

Case Study Setting

- Aim of the case study:
 - Comparison of three different forecast approaches with different complexity.
 - Comparison of different input data complexity within these approaches.
- One-year dataset:
 - Hourly electricity demand of 42 business consumers and one residual demand on the transformer (= target data).
 - Numerical weather prediction (NWP) data with 27 features.
- Input data:
 - Timestamp.
 - NWP.
 - Up to four past values of target data.
- → Variation of full input data set (35 exogenous variables) and reduced input data (5 exogenous variables).
- Evaluation on normalized root mean squared error (RMSE) for **static** and **dynamic** forecasts.

Selected Forecast Approaches

1. ARIMAX:

- Autoregressive (AR) integrated (I) moving average (MA) models with exogenous input variables (X).
- "Classical" time series analysis.
- Linear relationship between target variable and past values of target variable as well as exogenous inputs.
- 2. Artificial Neural Networks (ANN):
 - One of the most popular ML techniques. Part of the academic literature for more than 20 years.
 → Gain on importance in the last 5-10 years.
 - Network of ,perceptrons' that process their input signal via a defined activation function. The perceptrons are connected via weights.

 \rightarrow Non-linear relationship between target and input variables.

- 3. Auto-LSTM:
 - Combination of AutoEncoder (AE) neural network and a Long Short Term Memory (LSTM) network
 → Advancement of ANN.
 - \rightarrow Approach of the emerging field of deep learning.
 - Designed for dynamic forecast.

Case Study Overview

- Case study leads to 258 prediction models for the 43 target datasets (3 methods * 2 input variations = 6 models per dataset)
- Grid search for each model:
 - 75 ARIMAX configurations
 - 648 ANN configurations
 - 1152 Auto-LSTM variations
- Evaluation of Auto-LSTM only for dynamic forecast

Erik Heilmann

1st IAEE Online Conference

UNIKASSEL

ER

SIT

Δ Τ

Results (normalized RMSE) - Overview

Results (normalized RMSE) - Dynamic Forecast

UNIKASSEL VERSITÄT

Conclusion

- ML as structured modeling process:
 - Data-based
 - \rightarrow generalize from training data onto unknown test data.
 - Aiming on specific target (e.g. prediction of a electricity demand).
 → Results give comparable information about the performance of each model.
- Results of the Case Study:
 - All the used approaches, in principle, able to provide forecasts with comparable quality.
 - No general relationship between high model complexity and good model performance.
 - No general relationship between the amount of different input data and good model performance.
 - However, it can be worth comparing models of different types and selecting the one that performs best for the pursued objective.
- The applied models provide black-box forecasts that can be used for further investigations, but may be difficult to interpret.

Thanks for your interest! Questions?

Erik Heilmann University of Kassel Chair for Energy Economics <u>Erik.Heilmann@uni-kassel.de</u> +49 561- 804 7175

U N I K A S S E L V E R S I T 'A' T Co authors: Janosch Henze Heike Wetzel

BACK UP

ANN structure

Grid search hyper-parameters

U N I K A S S E L V E R S I T 'A' T

Table 1: ARIMAX grid search parameters.

Parameter	Range
p- and q-order	[0, 1, 2, 3, 4]
d-order	[0, 1, 2]

Table 3: AutoEncoder parameters split for full and reduced dataset..

	full	reduced
Learning Rate	0.001 - 0.01	0.001 - 0.01
Encoder Size	[[34, 30, 20, 10]]	[[5, 10, 7, 4]]

Table 2: ANN grid search parameters.

Parameter	Range
Number of layers	[2, 3]
Nodes in each layer	[5, 10, 15]
Regularization parameter	[0.1, 0.01, 0.001]
Activation functions	[ReLU, tanh]
Initial learning rate	[0.1, 0.01, 0.001]

Table 4: LSTM grid search parameters..

Parameter	Range
Learning Rate	0.001 - 0.01
Encoder Size (full or reduced)	[34, 30, 20, 10] or $[5, 10, 7, 4]$
Number of LSTM cells	[1, 2, 4]
Hidden size of LSTM cells	[1, 5, 10]
Random initialization of LSTM weights	[True, False]

_

Results Static Forecast (normalized RMSE)

Discussion of Results

- Static errors are often smaller than dynamic errors, which is in line with the expectation that the error term accumulates with every additional forecast time step.
- Train errors of ML models in general lower than test errors.
- For static forecast ANN outperforms ARIMAX.
- For dynamic forecast no general advantage of any of the tested methods.
- No general difference in model performance between the full input dataset and the reduced dataset.