Erik Heilmann

Forecast of High Frequency
Energy Data Based on

Machine Learning Applications

15t IAEE Online Conference

Concurrent Session 75: Market Modeling

Erik Heilmann Co authors:

University of Kassel UNI KASSEL Janosch Henze

Chair for Energy Economics —— Heike Wetzel
Erik.Heilmann@uni-kassel.de VERSITAT

+49 561- 804 7175

1t IAEE Online Conference


mailto:Erik.Heilmann@uni-kassel.de

UNIKASSEL

Structure PE Bl

* Motivation

* What is ,Machine Learning?
Part 1: Machine Learning (ML) in energy economics

* Modeling process of ML

e Application on energy demand data

e Case study setting
o e Selected forecast approaches
Part 2: Exemplary application
* Results and Discussion

* Conclusion

Erik Heilmann 15t IAEE Online Conference 2



UNIKASSEL

Motivation — Forecasts in Energy Economics VERSITAT

Classical short-term forecasts’ tasks:
* Optimal scheduling of energy plants.
* Network operation tasks.
* Price indications for optimal marketing.

Classical long-term forecasts’ tasks:
* Analysis of different energy sectors and peak demands to design future energy supply and networks.
 Identification of strategies for energy efficiency enhancements and decreasing greenhouse gas emissions.
* Giving the basis for policy decision-making.

* New use cases (e.g. local balancing of electricity) require forecasts with a high temporal and local
resolution.

Machine Learning (ML) techniques can provide forecasts based on big amount of data
— state-of-the-art in technical oriented literature, but not in economic oriented literature.
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What is ,Machine Learning‘? VERSITAT

* No general definition in the literature.

* Main characteristics of a ML model:
* Itis based on some experience and therefore data-

driven.
* it gets trained on a specific task that can be measured
by some performance measure (for example an error _ : :
. . . Experience Machine Learning
term). The performance, in general, improves with the (nput Data) Model Task
guantity of appropriate experience. /

* Most common model tasks are prediction,
classification and clustering.

Performance

* Data can be labeled or unlabeled. s
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Modeling process of ML models
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Application on Energy Demand Data VERSITHAT

* Model task = prediction Exemplary static vs. dynamic prediction
* Target data = energy demand Dynamic t=0..24
Dynamic t=25..48
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Case Study Setting VERSITHT

* Aim of the case study:
* Comparison of three different forecast approaches with different complexity.
* Comparison of different input data complexity within these approaches.

* One-year dataset:

* Hourly electricity demand of 42 business consumers and one residual demand on the transformer (= target
data).

* Numerical weather prediction (NWP) data with 27 features.

* |Input data:
* Timestamp.
 NWP.
» Up to four past values of target data.

—> Variation of full input data set (35 exogenous variables) and reduced input data (5 exogenous variables).

e Evaluation on normalized root mean squared error (RMSE) for static and dynamic forecasts.
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Selected Forecast Approaches FE R U

1. ARIMAX:
» Autoregressive (AR) integrated (I) moving average (MA) models with exogenous input variables (X).
e ,Classical” time series analysis.
* Linear relationship between target variable and past values of target variable as well as exogenous inputs.

2. Artificial Neural Networks (ANN):

* One of the most popular ML techniques. Part of the academic literature for more than 20 years.
— Gain on importance in the last 5-10 years.

* Network of ,perceptrons’ that process their input signal via a defined activation function. The perceptrons are
connected via weights.
= Non-linear relationship between target and input variables.

3. Auto-LSTM:

* Combination of AutoEncoder (AE) neural network and a Long Short Term Memory (LSTM) network
- Advancement of ANN.

- Approach of the emerging field of deep learning.
* Designed for dynamic forecast.
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Case Study Overview

e Case study leads to 258 prediction
models for the 43 target datasets
(3 methods * 2 input variations

= 6 models per dataset)

* Grid search for each model:
e 75 ARIMAX configurations
648 ANN configurations

1152 Auto-LSTM variations

* Evaluation of Auto-LSTM only for
dynamic forecast
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Results (normalized RMSE) - Overview
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Results (normalized RMSE) - Dynamic Forecast 3
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Conclusion ofodiple bt

e ML as structured modeling process:

* Data-based
- generalize from training data onto unknown test data.

* Aiming on specific target (e.g. prediction of a electricity demand).
— Results give comparable information about the performance of each model.

* Results of the Case Study:
» All the used approaches, in principle, able to provide forecasts with comparable quality.
* No general relationship between high model complexity and good model performance.
* No general relationship between the amount of different input data and good model performance.
* However, it can be worth comparing models of different types and selecting the one that performs best for the
pursued objective.

* The applied models provide black-box forecasts that can be used for further investigations, but may be
difficult to interpret.
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ANN structure vofeogd gl b e
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Grid search hyper-parameters *

Table 1: ARIMAX grid search parameters. Table 3: AutoEncoder parameters split for full and reduced dataset..
Parameter Range full reduced
p- and qorder [0, 1,2,3,4] Learning Rate 0.001 —0.01 0.001 — 0.01
d-order 0,1,2] Encoder Size  [[34,30,20,10]]  [[5.10,7,4]]
Table 2: ANN grid search parameters. Table 4: LSTM grid search parameters..
Parameter Range Parameter Range
}Iumhelr of layers i 2, ?'] Learning Rate 0.001 — 0.01
Nodes in each layer (5,10, 15] Encoder Size (full or reduced) [34, 30,20, 10] or [5,10,7,4]
Regularization parameter [0.1,0.01, 0.001] Number of LSTM cells [1,2,4]
Activation functions [ReLU. tanh] Hidden size of LSTM cells 11,5,10]
Initial learning rate [0.1,0.01, 0.001] Random initialization of LSTM weights [True,False]
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Results Static Forecast (normalized RMSE)

*  Mean

&

020

0.05

(=1
-
o

o

MNormalized Root Mean Squared Error

(=]
-
(=]

@@6@ Q‘a@“ §

o o ) ) )
& 5 A S
5 5 S S & & S
& & S & & & & &
ol ¥ & & ul & & &
‘g\(‘ @ﬁ} \(? &
Model approach

Erik Heilmann 15t IAEE Online Conference

U
\"/

Il KASSEL
RSITAT

18



UNIKASSEL

Discussion of Results B B

 Static errors are often smaller than dynamic errors, which is in line with the expectation that the error
term accumulates with every additional forecast time step.

* Train errors of ML models in general lower than test errors.
* For static forecast ANN outperforms ARIMAX.
* For dynamic forecast no general advantage of any of the tested methods.

* No general difference in model performance between the full input dataset and the reduced dataset.
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