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Motivation – Forecasts in Energy Economics

• Classical short-term forecasts‘ tasks:
• Optimal scheduling of energy plants.

• Network operation tasks.

• Price indications for optimal marketing.

• …

• Classical long-term forecasts‘ tasks:
• Analysis of different energy sectors and peak demands to design future energy supply and networks.

• Identification of strategies for energy efficiency enhancements and decreasing greenhouse gas emissions.

• Giving the basis for policy decision-making.

• …

• New use cases (e.g. local balancing of electricity) require forecasts with a high temporal and local 
resolution.

• Machine Learning (ML) techniques can provide forecasts based on big amount of data
 state-of-the-art in technical oriented literature, but not in economic oriented literature.
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What is ‚Machine Learning‘?

• No general definition in the literature.

• Main characteristics of a ML model:
• It is based on some experience and therefore data-

driven.

• it gets trained on a specific task that can be measured 
by some performance measure (for example an error 
term). The performance, in general, improves with the 
quantity of appropriate experience.

• Most common model tasks are prediction, 
classification and clustering.

• Data can be labeled or unlabeled.
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Modeling process of ML models
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Application on Energy Demand Data

• Model task = prediction

• Target data = energy demand

• Input data:
• (past) Energy demand

• Time stamp

• Weather ( separate forecasts needed)

• … any explanatory data

• Forecast horizon?
• Static forecast for the next time step

• Dynamic forecast for the next n time 
steps (using own prediction as inputs)
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Exemplary static vs. dynamic prediction
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Case Study Setting

• Aim of the case study: 

• Comparison of three different forecast approaches with different complexity.

• Comparison of different input data complexity within these approaches.

• One-year dataset:
• Hourly electricity demand of 42 business consumers and one residual demand on the transformer (= target 

data).

• Numerical weather prediction (NWP) data with 27 features.

• Input data:
• Timestamp.

• NWP.

• Up to four past values of target data.

 Variation of full input data set (35 exogenous variables) and reduced input data (5 exogenous variables).

• Evaluation on normalized root mean squared error (RMSE) for static and dynamic forecasts.
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Selected Forecast Approaches

1. ARIMAX: 
• Autoregressive (AR) integrated (I) moving average (MA) models with exogenous input variables (X).

• „Classical“ time series analysis.

• Linear relationship between target variable and past values of target variable as well as exogenous inputs.

2. Artificial Neural Networks (ANN):
• One of the most popular ML techniques. Part of the academic literature for more than 20 years.
 Gain on importance in the last 5-10 years.

• Network of ‚perceptrons‘ that process their input signal via a defined activation function. The perceptrons are 
connected via weights. 
 Non-linear relationship between target and  input variables.

3. Auto-LSTM:
• Combination of AutoEncoder (AE) neural network and a Long Short Term Memory (LSTM) network
 Advancement of ANN.
 Approach of the emerging field of deep learning.

• Designed for dynamic forecast.

91st IAEE Online ConferenceErik Heilmann



Case Study Overview

• Case study leads to 258 prediction 
models for the 43 target datasets 
(3 methods * 2 input variations 
= 6 models per dataset)

• Grid search for each model:
• 75 ARIMAX configurations

• 648 ANN configurations

• 1152 Auto-LSTM variations

• Evaluation of Auto-LSTM only for 
dynamic forecast
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Results (normalized RMSE) - Overview
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Results (normalized RMSE) - Dynamic Forecast
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Complete input data Reduced input data



Conclusion

• ML as structured modeling process:
• Data-based 
 generalize from training data onto unknown test data. 

• Aiming on specific target (e.g. prediction of a electricity demand).
 Results give comparable information about the performance of each model.

• Results of the Case Study:
• All the used approaches, in principle, able to provide forecasts with comparable quality.

• No general relationship between high model complexity and good model performance.

• No general relationship between the amount of different input data and good model performance.

• However, it can be worth comparing models of different types and selecting the one that performs best for the 
pursued objective.

• The applied models provide black-box forecasts that can be used for further investigations, but may be 
difficult to interpret. 
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Thanks for your interest!
Questions?
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BACK UP
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ANN structure
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Grid search hyper-parameters
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Results Static Forecast (normalized RMSE)
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Discussion of Results

• Static errors are often smaller than dynamic errors, which is in line with the expectation that the error 
term accumulates with every additional forecast time step.

• Train errors of ML models in general lower than test errors.

• For static forecast ANN outperforms ARIMAX.

• For dynamic forecast no general advantage of any of the tested methods.

• No general difference in model performance between the full input dataset and the reduced dataset.
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