Renewable Risk and Its Impact on Market Prices:
The German Case

Philip Schnaars

University of Hamburg

IAEE Online Conference 2021
June 8th
Motivation

- Increase of renewable capacity has many facets
 - Merit-order effect (Ketterer, 2014)
 - Firm behavior with diversified portfolios (Acemoglu et al., 2017)
 - Balancing of forecast errors (Kiesel & Paraschiv, 2017)

- Two-stage market setup
 - Large share of electricity is sold day-ahead
 - Only forecasts for renewable generation available at this point

- Do renewable firms react to risk in weather predictions?
Incentive to withhold capacity

- Consider a risk-averse firm with renewable capacity in a competitive market
- Reacts to both individual output risk and aggregate price risk (Bessembinder & Lemmon, 2002)
- Hedge against price risk by reducing output at the day-ahead stage
- Withholding of renewable electricity will increase the day-ahead price via the merit-order effect
 - Day-ahead price will contain a risk premium

- Renewable firms in Germany are exposed to the market price via the market premium model
 - 95% (25%) of total wind (solar) electricity produced in 2018 (Fraunhofer, 2019)
Price impact of output risk

High price impact

Low price impact
The data

- Hourly data for Germany, 2015 - 2018
- Day-ahead and intraday price
- Forecasted and realized renewable production and demand
- Projected wind speed and solar radiation
- Measure for risk derived from meteorological model (COSMO-DE-EPS)
How to measure forecast risk?

- COSMO-DE-EPS is an ensemble model
- 20 different predictions for every point in time
- Example for wind in region 23:

```
Lower risk: 30.8.2016, 4am-5am
Higher risk: 18.1.2018, 11pm-12am
```
Regional information

- 95 regions allow for cluster identification

Wind capacity shares

Solar capacity shares
Explanatory variables of interest

- **Continuous:**
 - Capacity-weighted average output risk
 - Split into high & low price impact regions
 - High if capacity share exceeds 90th percentile

- **Binary:**
 - High output risk in high and low price impact regions
 - High if risk exceeds 90th percentile

- Both for wind and solar
- Qualitative results unaffected by threshold
Regression analysis: Price difference

- Dynamically complete time series regression
- No support for direct price effect of renewable risk
- Main drivers of price difference are forecast errors
Renewable withholding?

- Calculate curvature at market clearing point
- Should increase with renewable withholding, ceteris paribus
Regression analysis: Curvature

- Dynamically complete time series regression
- No support for withholding effect of renewable risk
- Main drivers of curvature are levels of predicted weather
Conclusions

► Do not find evidence in favor of hypothesis in Germany based on
 – Price premium
 – Shape of supply curve

► Possible explanations
 – Firms do not have access to this information
 – Output risk is not considered to be relevant information (Rational Inattention)
 – Expected benefits do not exceed costs of acquiring knowledge
Thank you

Please reach out:

philip.schnaars@uni-hamburg.de

Coefficients of main interest: price difference

<table>
<thead>
<tr>
<th>Feature</th>
<th>Coefficient</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>windstd</td>
<td>-0.21</td>
<td>[-0.43, 0.01]</td>
<td></td>
</tr>
<tr>
<td>radiationstd</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>windstd_high</td>
<td>0.05</td>
<td>[-0.28, 0.37]</td>
<td></td>
</tr>
<tr>
<td>windstd_low</td>
<td>-0.42</td>
<td>[-0.83, -0.01]</td>
<td></td>
</tr>
<tr>
<td>radiationstd_high</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>radiationstd_low</td>
<td>-0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>windstd_high_high</td>
<td>-0.01</td>
<td>[-0.24, 0.22]</td>
<td></td>
</tr>
<tr>
<td>windstd_low_high</td>
<td>-0.16</td>
<td>[-0.37, 0.05]</td>
<td></td>
</tr>
<tr>
<td>radiationstd_high_high</td>
<td>-0.01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>radiationstd_low_high</td>
<td>0.01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>windmean</td>
<td>-0.02</td>
<td>[-0.06, 0.03]</td>
<td>[-0.07, 0.02]</td>
</tr>
<tr>
<td>radiationmean</td>
<td>-0.14</td>
<td>[-0.91, 0.63]</td>
<td>[-0.96, 0.58]</td>
</tr>
<tr>
<td>FE_wind</td>
<td>-0.42</td>
<td>[-0.49, -0.35]</td>
<td>[-0.49, -0.35]</td>
</tr>
<tr>
<td>FE_solar</td>
<td>-0.62</td>
<td>[-0.72, -0.51]</td>
<td>[-0.72, -0.51]</td>
</tr>
<tr>
<td>FE_load</td>
<td>0.07</td>
<td>[0.04, 0.10]</td>
<td>[0.04, 0.10]</td>
</tr>
<tr>
<td>expload_DE</td>
<td>-0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.03</td>
<td>[0.44 - 1.63]</td>
<td>[0.50 - 1.70]</td>
</tr>
</tbody>
</table>
Coefficients of main interest: Curvature

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>windstd</td>
<td>-0.31</td>
<td>[-0.67,-0.06]</td>
<td></td>
</tr>
<tr>
<td>radiationstd</td>
<td>-0.00</td>
<td>[-0.01,-0.01]</td>
<td></td>
</tr>
<tr>
<td>windstd_high</td>
<td>-0.48</td>
<td>[-0.98,0.02]</td>
<td></td>
</tr>
<tr>
<td>windstd_low</td>
<td>0.17</td>
<td>[-0.45,0.80]</td>
<td></td>
</tr>
<tr>
<td>radiationstd_high</td>
<td>0.00</td>
<td>[-0.02,0.01]</td>
<td></td>
</tr>
<tr>
<td>radiationstd_low</td>
<td>0.00</td>
<td>[-0.01,0.00]</td>
<td></td>
</tr>
<tr>
<td>windstd_high_high</td>
<td>-0.25</td>
<td>[-0.61,0.10]</td>
<td></td>
</tr>
<tr>
<td>windstd_low_high</td>
<td>0.05</td>
<td>[-0.38,0.28]</td>
<td></td>
</tr>
<tr>
<td>radiationstd_high_high</td>
<td>0.23</td>
<td>[-0.79,0.37]</td>
<td></td>
</tr>
<tr>
<td>radiationstd_low_high</td>
<td>0.23</td>
<td>[-0.36,0.82]</td>
<td></td>
</tr>
<tr>
<td>windmean</td>
<td>-0.39</td>
<td>[-0.46,-0.32]</td>
<td>[-0.46,-0.33]</td>
</tr>
<tr>
<td>radiationmean</td>
<td>-0.01</td>
<td>[-0.01,-0.00]</td>
<td>[-0.01,-0.00]</td>
</tr>
<tr>
<td>expload_DE</td>
<td>0.00</td>
<td>[0.00,0.00]</td>
<td>[0.00,0.00]</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.61</td>
<td>[-4.62,-2.60]</td>
<td>[-4.69,-2.69]</td>
</tr>
</tbody>
</table>