SPATIO-TEMPORAL ANALYSIS OF SECTOR COUPLING PATHWAYS:

Combining top-down and bottom-up approaches for the German case

by Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Chair for Energy System Economics (FCN-ESE) RWTH Aachen University, Germany

1st IAEE Conference June 9th, 2021

FCN I Future Energy Consumer Needs and Behavior

Sector coupling enables the possibility of transferring decarbonization potential from the power sector to other sectors

Christina.kockel@eonerc.rwth-aachen.de

June 9th, 2021

E.ON Energy Research Center

Spatio-temporal resolved useful energy consumptions are required for essential energy system analysis

Supply side:

- Expansion of renewable energy source-based capacities
- Energy output and generation profile depend on geographical locations
- Weather-depended feed-in

Demand side:

- Sector coupling results in uncertainty how useful energy consumption is met by which final energy carriers
- Final energy carriers can be provided by different primary energy carriers

Research question

How can **demands** for **useful energy** be estimated based on available data in a **temporally and spatially** highly disaggregated resolution?

Slide 3

IAEE Conference June 9th, 2021

nce Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Christina.kockel@eonerc.rwth-aachen.de

Spatio-temporal disaggregation and aggregation

Slide 4

IAEE Conference Ch June 9th, 2021 Ch

Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Christina.kockel@eonerc.rwth-aachen.de

Methodology and data sets are available online open source

Accessible online via this link or QR code:

https://www.nature.com/articles/s41597-021-00907-w

Slide 5

Hourly resolved time series for useful energy demand 38 regions in Germany

JERICHO-E-usage dataset is online available.

Slide 6

IAEE Conference (June 9th, 2021

Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Christina.kockel@eonerc.rwth-aachen.de

Final energy consumption including demand for sector coupling technologies can be estimated

Christina.kockel@eonerc.rwth-aachen.de

E.ON Energy Research Center

resolved electricity demand for Germany

⁻ For a 95% GHG emission reduction scenario:

Based on technology-mix scenario for 95% GHG emission reduction compared to 1990 by DENA (2018)

Slide 8

IAEE ConferenceChristina Kockel, Lars Nolting, Jan Priesmann, Aaron PraktiknjoJune 9th, 2021Christina.kockel@eonerc.rwth-aachen.de

resolved electricity demand for Germany

For a 95% GHG emission reduction scenario:

Based on technology-mix scenario for 95% GHG emission reduction compared to 1990 by DENA (2018) ^{≥6}

Slide 9

IAEE Conference June 9th, 2021 Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Christina.kockel@eonerc.rwth-aachen.de

E.ON Energy Research Center

Analyses for renewable resources based on the demand-oriented final energy data

Difference demand- or supply-driven allocation of placement of RESbased capacities

Exemplarily shown for the expansion requirements of 95% GHG emission reduction scenario by DENA (2018)

Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo **IAEE** Conference Christina.kockel@eonerc.rwth-aachen.de

June 9th, 2021

Contribution of our research can be twofold:

Data sets for German energy system analysis
Temporally and spatially resolved useful energy consumption in Germany for the year 2019
Available online

Methodology

Methodology of combining top-down and bottom-up approaches

Approach transferable to other regions

Level of detail for useful energy demand allows essential analysis for current and future challenges within the energy systems

Slide 12IAEE Conference
June 9th, 2021Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo
Christina.kockel@eonerc.rwth-aachen.de

Thank you for your attention!

Sector coupling enables the possibility of transferring decarbonization potential from the power sector to other sectors

Overview of energy flow charts based on Zweifel et al. (2017)¹ ¹ Zweifel, P., Praktiknjo, A., Erdmann, G., 2017. Energy economic – Theory and Applications, Springer

Hourly resolved time series for useful energy demand 38 regions in Germany

JERICHO-E-usage dataset is online available.

Slide 15 IAEE Conference June 9th, 2021

 Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Christina.kockel@eonerc.rwth-aachen.de

Validation

	Legend			Useful energy								Final energy			
Relative deviation < 10% > 10%; < 20% > 10%; < 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20% > 20%	Absolute deviation [TWh/a] - < 0.5 > 0.5; < 3 < 0.5 > 3 > 0.5; < 3 > 3 > 0.5; < 3 > 3 applicaple	Color	Space heating	Hot water	Process heating	Space cooling	Process cooling	Mechanical	Information	Light	Mineral oils	Gas	Electricity	Biomass and waste	
DEA.	Residential Industrial Commerce Mobility														
DE3	Residential Industrial Commerce Mobility														
DE8 [.]	Residential Industrial Commerce Mobility														
DED.	Residential Industrial Commerce Mobility														

Slide 16 IAEE Conference June 9th, 2021

ce Christina Kockel, Lars Nolting, Jan Priesmann, Aaron Praktiknjo Christina.kockel@eonerc.rwth-aachen.de

Renewable energy sources capacities – status quo

