

1st IAEE Online Conference

Combined Heat and Power (CHP) plants fuelled by natural gas as a power generation solution for the energy transition - impact on the hourly carbon footprint of the electricity consumed in Switzerland

[Emilie Simon, University of Lausanne – HES-SO Valais-Wallis, <u>emilie.simon@hevs.ch</u>]
[Francesco Maria Cimmino, HES-SO Valais-Wallis, <u>francesco.cimmino@hevs.ch</u>]
[Stéphane Genoud, HES-SO Valais-Wallis, <u>stephane.genoud@hevs.ch</u>]

8th June 2021

Introduction:

Switzerland has committed to a transition to a low-carbon energy system

Nuclear phase-out SORTIE DU NUCLÉAIRE **Energy Strategy 2050** Promotion of ÉCONOMISER DE L'ÉNERGIE **ET AUGMENTER L'EFFICACITÉ PROMOTION DES** new renewable ÉNERGIES RENOUVELABLES energy Hydraulic power • Figure 1: Energy Strategy 2050 (OFEN, 2013)

HES-SO Valais-Wallis Page 2

1st IAEE Online Conference

•

Saving energy and increasing efficiency

(=)

- Buildings
- Mobility
- Industry
- **Appliances**

swissuniversities

Introduction:

Switzerland will have to replace 35% of its electricity production

- Nuclear phase-out : replacement of 35% of domestic power production
- Long-run: compensated by development of RE and reduction in consumption
- Short-run: importation ?
- Elcom: dangerous winter dependency :
 - threat to the security of supply
 - majority of imports are of fossil origin
 - → a substantial part of this missing winter production continues to be produced in Switzerland

→Need a temporary solution to produce electricity during winter in Switzerland

Combined heat power-plant (CHP) fuelled with natural gas can be a shortterm solution ?

HES-SO Valais-Wallis

Research questions

- 1) What is the impact of the electricity inflows from neighbouring countries on the hourly carbon footprint of the electricity consumed in Switzerland ?
- 2) How the replacement of a part of the inflows from neighbouring countries by Combined Heat and Power (CHP) fuelled with natural gas impacts the hourly carbon footprint of the electricity consumed in Switzerland ?

HES-SO Valais-Wallis Page 4

1st IAEE Online Conference

swissuniversities

Methods

The four parts of the research process

Imports from Germany impacts strongly the carbon footprint of the electricity consumed in CH

GHG content

EQUA Sala

Share of coal an lignite in the German generation mix is constantly decreasing

Figure 4: Switzerland and Germany Generation Mix

Variation between summer and winter carbon footprint is really important

Year	EFCons_{CH} (g CO2eq/kWh)	EFCons^{New} (g CO2eq/kWh)	Variation	
2016	143,58	133,76		-6.83
2017	150,83	140,84		-6.62
2018	118,18	114,36		-3.23
2019	94,36	95,37		1.07

 Table 1: Actual emission factor of the electricity consumed and results of the CHP simulation

Figure 5: Hourly emission factor of the electricity consumed in Switzerland (in g CO2eq/kWh)

CHP could produce nearly 10% of the electricity consumed in Switzerland

Figure 6: Source of the electricity consumed in Switzerland and its related GHG content after the CHP simulation

HES-SO Valais-Wallis Page 9

1st IAEE Online Conference

EQUA SALA

Conclusion

What we did:

- Adoption of an hourly approach to evaluate the hourly carbon footprint of the electricity consumed in Switzerland (2016-2019)
- Measurement of the impact of the electricity imports from neighbouring countries (DE, FR, AT, IT)
- Simulation of how the deployment of CHP fuelled with natural gas would impact this carbon footprint Results:
- Swiss dependency on electricity imports during winter has a non-negligible impact on the environment
- · Heavily impacted by imports from Germany and its coal-based power production
- The range between which the carbon footprint varies through time is huge (winter vs summer)
- CHP solution examined in this study could represent a short-term solution to produce power in Winter on the swiss territory

Further research:

- Effect of nuclear phase-out should be further explored
- Cost and feasibility of deployment such a solution

HES-SO Valais-Wallis Page 10

Acknowledgements

The authors acknowledge Holdigaz SA for support of this work.

HES-SO Valais-Wallis Page 11

1st IAEE Online Conference

swissuniversities

(=)

Questions

Emilie Simon HES-SO Valais-Wallis, Institut Entrepreneuriat et management Techno-Pôle 3 3960 Sierre

emilie.simon@hevs.ch

HES-SO Valais-Wallis Page 12

1st IAEE Online Conference

EQUAL SALARY