Can plant conversions and abatement technologies prevent asset stranding in the power sector?

Yangsiyu Lu1,2, Francois Cohen1,2,3, Stephen Smith1, Alex Pfeiffer1

1Smith School of Enterprise and the Environment, University of Oxford

2Institute for New Economic Thinking, University of Oxford

3Department of Economics, University of Barcelona

June 7, 2021
IAEE Conference
The fossil fuel power plants

Global coal power plants in 2020
Yellow: Operating; Pink and purple: under construction and planned

Illustration: Carbon Brief
Stranded assets

- Emissions from existing fossil fuel power plants go beyond carbon budgets consistent with Paris Agreement
 (Davis et al., 2010; Davis and Socolow, 2014; Rozenberg et al., 2015; McGlade and Ekins, 2015; Pfeiffer et al., 2016; Shearer et al., 2017; Tong et al., 2019)

- Fossil fuel assets may suffer from premature write-downs, devaluations, or conversion to liabilities
 (Caldecott et al., 2016; Carbon Tracker Initiative, 2015; McGlade and Ekins, 2015; Mercure et al., 2018; Pfeiffer et al., 2018)
Bet on abatement technologies

- CCS: prevent emissions from going to the atmosphere (Haszeldine 2009; Schrag 2007; Sgouridis et al. 2019)
- Bioenergy: absorb CO₂
- BECCS: negative emissions could expand carbon budget (Fuss et al. 2014; Griscom et al. 2017; Humpenöder et al. 2014)
Alternative solution: plant conversions

- Fuel switching
 - **Coal-to-gas**: More than 100 coal-fired plants in the US have been converted to natural gas since 2011 (Aramayo, 2020)
 - **Coal-to-biomass**: Europe and Canada have projects in operation (IEA and IRENA 2013; Stutzman et al. 2017; Carbon Brief, 2015)
- **CCS**: 55% of existing coal fleet in China suitable for retrofit (IEA 2016)

Drax (Yorkshire, UK) and OPG (Ontario, Canada)

Illustration: Bioenergy International/Power Engineering
This Paper

- **Research gap:** No study has rigorously analysed whether plant conversions and abatement technologies could mitigate asset stranding risk in the power sector.
Overview of Data

- **Global power plants**
 - Estimate current power plants’ future production level
 - Compile unit-level data from CoalSwarm, WEPP, and WRI

- **Climate scenarios**
 - Model pathways of electricity production required to attain 2 °C target
 - Retrieve scenarios from AMPERE project
 - Model different technology availabilities

<table>
<thead>
<tr>
<th>Technology scenarios</th>
<th>All technologies deployed scenarios</th>
<th>Single technology change scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS</td>
<td>Fully available</td>
<td>Not available</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Fully available</td>
<td>Limited to 100EJ/year</td>
</tr>
<tr>
<td>Nuclear</td>
<td>Fully available</td>
<td>Not available</td>
</tr>
<tr>
<td>Wind and Solar</td>
<td>Advanced</td>
<td>Limited to 20%</td>
</tr>
</tbody>
</table>

- **Other scenarios**
 - Energy intensity
 - Improves at historical rates
 - Improves 1.5 times faster
Overview of method(1)

- **Definition of stranded assets:**
 - Lower electricity generation due to climate constraints (PWh)
 - Difference of electricity generation between existing power plants and climate scenarios

- **Four step method**
 - Compute future electricity generation from existing power plants
 - Estimate asset stranding for each climate scenario
 - Take plant conversions into account
 - Quantify the impact of technology availability
 - Compare between technology pair-wise scenarios
Overview of method (2)

- **Plant conversion assumptions**

<table>
<thead>
<tr>
<th>Plant suitabilty</th>
<th>Conversion percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-to-gas</td>
<td>25% to 50%</td>
</tr>
<tr>
<td>Have access to gas</td>
<td></td>
</tr>
<tr>
<td>Coal-to-biomass</td>
<td>20% to 50%</td>
</tr>
<tr>
<td>All coal-fired units</td>
<td></td>
</tr>
<tr>
<td>CCS</td>
<td>50% to 100%</td>
</tr>
<tr>
<td>Capacity > 100MW, <20 years</td>
<td></td>
</tr>
<tr>
<td>emit < 1000g CO₂/KWh,</td>
<td></td>
</tr>
<tr>
<td>located within CCS suitable area</td>
<td></td>
</tr>
</tbody>
</table>

1. Around 98% coal-fired units are located in countries having access to gas
2. 25% is the coal-to-gas conversion percentage in the US from 2011 to 2019
3. Biomass co-firing could replace between 20% and 50% of coal (IEA 2013)
4. Follow Caldecott et al. (2016), around 24% global fossil fuel units are CCS suitable
Estimates of future electricity generation

- In total: 540 PWh could be produced from current plants

Fig.1 Forecasted electricity generation between 2021 and 2100 (a) by fuel, (b) by region
Estimates of stranded assets

- In total: 270 PWh risk of stranding

Fig.2 Estimated stranded assets in 2 °C “all technologies deployed” climate scenarios (2021-2100)
Impact of plant conversions

- **Baseline:** 0% conversion, 270PWh asset stranding

![Fig. 3 Impact of plant conversions on global asset stranding](image_url)
Depending on CCS and bioenergy availability

- **Baseline**: "all technologies deployed" scenarios

![Impact of technology availability on global asset stranding](image)

Fig.4 Impact of technology availability on global asset stranding
Conclusions

- High stranding risk even under optimistic technology assumptions
 - 270 PWh ≈ 10 times global electricity generation in 2018

- Plant conversions have limited impact
 - Reduce to 220 PWh

- Stranding may be 68% or 44% higher if CCS or bioenergy not deployed
 - CCS: high cost, storage sites availability (Reiner, 2016; Scott et al., 2013)
 - Bioenergy: feedstock availability, deforestation, food security, biodiversity loss (Creutzig et al., 2015; Ember, 2019)
Implications

- **Abatement technologies could reduce asset stranding**
 - Should strongly push the development of CCS and bioenergy

- **However, asset stranding risk remains substantial**
 - Stakeholders should act swiftly to minimize stranding risk
 - Existing plants: fuel-switching remains as an option with limited impact
 - Pipeline plants: very little or no fossil fuel plants can be commissioned
Thank you!

yangsiyu.lu@ouce.ox.ac.uk

@yangsiyulu