Can plant conversions and abatement technologies prevent asset stranding in the power sector?

Yangsiyu Lu<sup>1,2</sup>, Francois Cohen<sup>1,2,3</sup>, Stephen Smith<sup>1</sup>, Alex Pfeiffer<sup>1</sup>

<sup>1</sup>Smith School of Enterprise and the Environment, University of Oxford

<sup>2</sup>Institute for New Economic Thinking, University of Oxford

<sup>3</sup>Department of Economics, University of Barcelona

June 7, 2021 IAEE Conference





| <b>0000</b> 000 000 00 | Motivation |     |      |    |
|------------------------|------------|-----|------|----|
|                        | 00000      | 000 | 0000 | 00 |

### The fossil fuel power plants



#### Global coal power plants in 2020 Yellow: Operating; Pink and purple: under construction and planned

Illustration: Carbon Brief

| Motivation |  |  |
|------------|--|--|
| 0000       |  |  |

### Stranded assets

 Emissions from existing fossil fuel power plants go beyond carbon budgets consistent with Paris Agreement (Davis et al., 2010; Davis and Socolow, 2014; Rozenberg et al., 2015; McGlade and Ekins, 2015; Pfeiffer et al., 2016; Shearer et al., 2017; Tong et al., 2019)

• Fossil fuel assets may suffer from premature write-downs, devaluations, or conversion to liabilities

(Caldecott et al., 2016; Carbon Tracker Initiative, 2015; McGlade and Ekins, 2015; Mercure et al., 2018; Pfeiffer et al., 2018)





Illustration: Tong et al. 2018/ Carbon Tracker, 2015

| Motivation |  |  |
|------------|--|--|
| 00000      |  |  |

### Bet on abatement technologies

- CCS: prevent emissions from going to the atmosphere (Haszeldine 2009; Schrag 2007; Sgouridis et al. 2019)
- Bioenergy:absorb CO<sub>2</sub>
- BECCS: negative emissions could expand carbon budget (Fuss et

al.2014; Griscom et al.2017; Humpenöder et al. 2014)

# Chevron turns on \$2.5bn carbon capture plant in Australia

CCS project to reduce emissions suffered years of delays over technical issues



How Voluntary Carbon Offsets work



Illustrations:Financial Times/Shell website

# Alternative solution: plant conversions

- Fuel switching
  - **Coal-to-gas**: More than 100 coal-fired plants in the US have been converted to natural gas since 2011 (Aramayo, 2020)
  - Coal-to-biomass: Europe and Canada have projects in operation (IEA and IRENA 2013; Stutzman et al. 2017; Carbon Brief, 2015)
- CCS: 55% of existing coal fleet in China suitable for retrofit(IEA 2016)



Drax (Yorkshire,UK) and OPG(Ontario, Canada)

Illustration: Bioenergy International/Power Engineering

| Motivation<br>00000 |  | Conclusions<br>00 |
|---------------------|--|-------------------|
|                     |  |                   |

## This Paper

• Research gap: No study has rigorously analysed whether plant conversions and abatement technologies could mitigate asset stranding risk in the power sector



Illustration:EQ International

| Data and Method |  |
|-----------------|--|
| •00             |  |

## Overview of Data

#### Global power plants

- Estimate current power plants' future production level
- Compile unit-level data from CoalSwarm, WEPP, and WRI

#### Climate scenarios

- Model pathways of electricity production required to attain 2 °C target
- Retrieve scenarios from AMPERE project
  - Model different technology availabilities

| Technology scenarios |                              |                           |
|----------------------|------------------------------|---------------------------|
|                      | All technologies             | Single technology         |
|                      | deployed scenarios           | change scenarios          |
| CCS                  | Fully available              | Not available             |
| Bioenergy            | Fully available              | Limited to 100EJ/year     |
| Nuclear              | Fully available              | Not available             |
| Wind and Solar       | Advanced                     | Limited to 20%            |
| <b>.</b> .           |                              |                           |
| Other scenarios      |                              |                           |
| Energy intensity     | Improves at historical rates | Improves 1.5 times faster |
|                      |                              |                           |

# Overview of method(1)

#### • Definition of stranded assets:

- Lower electricity generation due to climate constraints (PWh)
- Difference of electricity generation between existing power plants and climate scenarios

#### • Four step method

- Compute future electricity generation from existing power plants
- Estimate asset stranding for each climate scenario
- Take plant conversions into account
- Quantify the impact of technology availability
  - Compare between technology pair-wise scenarios

# Overview of method (2)

#### • Plant conversion assumptions

|                 | Plant suitability                               | Conversion percentage   |
|-----------------|-------------------------------------------------|-------------------------|
| Coal-to-gas     | Have access to gas <sup>1</sup>                 | 25% to 50% <sup>2</sup> |
|                 |                                                 |                         |
| Coal-to-biomass | All coal-fired units                            | 20% to 50% <sup>3</sup> |
| 665             | Comparison 100N/W/ <20                          | $F00/ \pm 1000/$        |
| CCS             | Capacity $> 100 \text{MVV}, < 20 \text{ years}$ | 50% to 100%             |
|                 | $emit < 1000g CO_2/KWh$ ,                       |                         |
|                 | located within CCS suitable area <sup>4</sup>   |                         |
| 1 Around 98% co | al-fired units are located in countries l       | asving access to gas    |

<sup>1</sup> Around 98% coal-fired units are located in countries having access to gas

 $^2$  25% is the coal-to-gas conversion percentage in the US from 2011 to 2019

<sup>3</sup> Biomass co-firing could replace between 20% and 50% of coal (IEA 2013)

<sup>4</sup> Follow Caldecott et al.(2016), around 24% global fossil fuel units are CCS suitable

|  | Results |  |
|--|---------|--|
|  | 0000    |  |

### Estimates of future electricity generation

• In total: 540 PWh could be produced from current plants



Fig.1 Forecasted electricity generation between 2021 and 2100 (a)by fuel, (b)by region

|  | Results |  |
|--|---------|--|
|  | 0000    |  |

### Estimates of stranded assets

#### • In total: 270 PWh risk of stranding



Fig.2 Estimated stranded assets in 2 °C "all technologies deployed" climate scenarios (2021-2100)

Lu et al.(2021)

Stranded assets

|  | Results |  |
|--|---------|--|
|  | 0000    |  |

### Impact of plant conversions

#### • Baseline: 0% conversion, 270PWh asset stranding



Fig.3 Impact of plant conversions on global asset stranding

|  | Results |  |
|--|---------|--|
|  | 0000    |  |

## Depending on CCS and bioenergy availability

• Baseline: "all technologies deployed" scenarios



Fig.4 Impact of technology availability on global asset stranding

|  | Conclusions<br>●0 |
|--|-------------------|
|  |                   |

# Conclusions

- High stranding risk even under optimistic technology assumptions
  - 270 PWh  $\approx$  10 times global electricity generation in 2018
- Plant conversions have limited impact
  - Reduce to 220 PWh
- Stranding may be 68% or 44% higher if CCS or bioenergy not deployed
  - CCS: high cost, storage sites availability (Reiner, 2016; Scott et al., 2013)
  - Bioenergy: feedstock availability, deforestation, food security, biodiversity loss (Creutzig et al., 2015; Ember, 2019)

|  | Conclusions |
|--|-------------|
|  | 00          |
|  |             |

# Implications

#### • Abatement technologies could reduce asset stranding

Should strongly push the development of CCS and bioenergy

#### • However, asset stranding risk remains substantial

- Stakeholders should act swiftly to minimize stranding risk
- Existing plants: fuel-switching remains as an option with limited impact
- Pipeline plants: very little or no fossil fuel plants can be commissioned

#### Thank you!

#### yangsiyu.lu@ouce.ox.ac.uk

💙 @yangsiyulu



Institute for New Economic Thinking AT THE OXFORD MARTIN SCHOOL