09.06.2021
1st IAEE Online Conference

Assessing residential PV-systems: Combining economic and ecological assessment to ease decision making
Introduction

- Shift to renewable energy sources to stop climate change.
- Growing interest of society in climate and environmental protection.
- Photovoltaic (PV) for single-family houses:
 - Efficient use of already sealed area (space for systems is limited).
 - Different module types available.
- Magic triangle of energy policy: system costs, environmental protection and security of supply
- Environmental aspects go further than Carbon Dioxide Emissions: e.g. land use, minerals and metals extraction, human toxicity.

⇒ Multi-Dimensional Problem: The decision making process is complex; possible trade-offs must be weighted.
Research Question

- From a perspective of a house owner: Is it interesting at all to install rooftop PV systems?
 - Is the installation of photovoltaic profitable in terms of economic and ecologic aspects?
- Bringing economic and ecological aspects together - how to solve the multi criteria decision problem?
- Can the integration of an environmental assessment be helpful for the decision making process? Does it introduce new aspects and can possible drive the expansion of renewables?
System Parameters

- Electricity consumption: 4000 kWh
- Installed photovoltaic capacity 3 kWp
- Average yield 817 kWh/kWp (Bundesnetzagentur 2019)
- Module degradation of 2% in the first year; afterwards 0.5% per year
- Self consumption of 35% of generated PV electricity (Quaschning et al. 2013)
PV Modules

- Mainstream: state of the art modules with 275-325Wp, white back film
- Low Cost Modules (Second hand modules, lower quality)
- All Black (modules with black back film with 290-390Wp)
- High Efficiency Crystalline (crystalline modules from 330Wp (e.g. PERC, HJT, N-Typ)
- Thin Film (e.g. CIS, CdTe)

(www.pvxchange.com)
Method I: Levelized Cost of Electricity (LCOE)

Parameter:

- Discount rate $r = 2.7\%$
- Lifetime $n = 30\; a$ (Wernet et al. 2016)
- Replacement investment for inverter after 15 a
- Credit of 0.09 USD/kWh for fed in electricity (Bundesnetzagentur 2021)
- Operation & Maintenance 5 $\frac{USD}{kW_p*a}$ (Steffen et al. 2020)

\[
\text{LCOE} = \frac{\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1 + r)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1 + r)^t}}
\]

Where:

- LCOE = the average lifetime levelised cost of electricity generation
- I_t = investment expenditures in the year t
- M_t = operations and maintenance expenditures in the year t
- F_t = fuel expenditures in the year t
- E_t = electricity generation in the year t
- r = discount rate
- n = life of the system.

(IRENA, 2019)
Method II: Life Cycle Assessment (LCA)

- Assessment of the full Life Cycle of a technology (ISO 14040/44)
 - All stages from raw material extraction, production, use and disposal are considered.
 - Different environmental impacts are assessed (Greenhouse Gases, Air Pollutants, Land Use, Minerals & Metals etc.)

- To evaluate these impacts the Ecological Scarcity Method is applied (Frischknecht and Büsser-Knöpfel 2013, Lambrecht et al. 2020)
 - Special version of a weighted sum.
 - External normalisation and weighting is applied, which is based on politically legitimised targets

\[
u_i(x) = \sum_{j=1}^{n} w_j r_{ij}(x), \quad i = \text{scenarios and } j = \text{criteria (Tzeng and Huang 2011)}
\]

\[w_j = \left(\frac{A_j}{T_j}\right)^2 \quad \text{... weight} \quad r_{ij}(x) = \frac{x_{i,j}}{N_j}
\]

(A = current environmental pressure, N = reference value, T = target value)
Method III: Weighted Sum Approach

- The criteria are total costs and the total environmental impact per year.
- Normalisation is performed with Vector Normalisation (Vafaei et al. 2018):

\[
 r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}
\]

i = scenarios and j = criteria (Tzeng and Huang 2011)

x = criteria results
- Weighting \(w_j \): Economy and Ecology 1:1
- Result: \(u_i (x) = \sum_{j=1}^{n} w_j r_{ij} (x) \),
Results I: LCOE

- Low Cost Modules reach lowest LCOE followed by Mainstream Modules
- LCOE is higher for All Black, High Efficiency Crystalline and Thin Film

⇒ Only the cheapest and with probably lowest efficiency are viable compared to the German electricity mix.
⇒ Yearly savings are 100 USD/a for Low Cost Modules (10 USD/a for Mainstream)
⇒ Why doing the effort of installing PV at all?

Fig. 3: LCOE Residential PV and average price for German electricity

Fig. 4: Yearly total electricity costs for a household
Results: LCA

- High general reduction potential of environmental impacts
- In contrast to LCOE all alternatives have lower impacts.
- Especially global warming (grey)
- Increase of heavy metals emissions into water

⇒ In contrast to the cost assessment thin film PV is the best option
⇒ All PV technologies have a lower environmental impact than the German electricity mix.
Results: Weighted Sum

- Low Costs modules results in being the best option.
 - Lifetime can be discussed.

- Mainstream modules are following with a total score of 0.877.

- Electricity mix is the worst option.

Fig. 7: Total normalized results (weighting 1:1)
Sensitivity Analysis: Weighting

Fig. 8: Increasing the economic weight (ecologic weight = 1)

Fig. 9: Increasing the ecologic weight (economic weight = 1)
Conclusion

- The utilization of PV plants is environmentally beneficial but only for low-priced modules economically viable.
- There are PV modules with better environmental performance available.
- Attractiveness for the installation of PV plants for homeowners could be higher.
 ⇒ Updated incentive system is needed to differentiate between module types…
 ⇒ …or ways to increase self-consumption (integration of electricity storage systems?)
- Performing an assessment for environmental impacts next the economic increases insights and moreover provides more arguments for or against different energy scenarios.
- It is adventurous to include more environmental impacts than carbon dioxide emissions as there are counteracting impacts.
- Method is applicable to assess every energy system to weigh up economic and environmental impacts.
Outlook

- Method to define weights
- Extending the assessment by implementing electricity storage systems
- Analysing industrial or commercial buildings
- Integration of security of supply
References

