# Energy Security of Poland and Coal Supply: Price Analysis

#### Honorata Nyga-Łukaszewska<sup>1</sup>, Kentaka Aruga<sup>2,\*</sup> and Katarzyna Stala-Szlugaj<sup>3</sup>

<sup>1</sup>SGH Warsaw School of Economics, Al. Niepodleglosci 162, 02-554 Warsaw, Poland, hlukas@sgh.waw.pl

<sup>2</sup> Graduate School of Humanities and Social Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan, aruga@mail.saitama-u.ac.jp

<sup>3</sup> Mineral and Energy Economy Research Institute, Polish Academy of Sciences; ul. Wybickiego 7A, 31-261 Krakow, Poland, kszlugaj@min-pan.krakow.pl

### Contents



#### Goals and backgrounds







Proceedings of The 1st IAEE Online Conference, 7th - 9th June 2021

## Goals

power (PSCMI 1) vs international coal and gas

Polish coal market for

Analyzing energy security of Poland from the price aspect

> Polish coal market for heating (PSCMI 2) vs international coal and gas

## Hypotheses

PSCMI1 (steam coal fines sold to power industry): depends highly on domestic coal production

PSCMI1 linked with the international coal market?

H2

**H1** 

PSCMI2 (steam coal fines sold for heating purpose): use of natural gas is increasing

PSCMI2 linked with the international gas market?

## Relevant studies

- Studies related to energy security
  - Studies defining energy security and finding its indicator (Holley and Lecavalier, 2017; Cecchi et al., 2009; Kruyt et al., 2009).
  - Energy importing and energy security issue (Vivoda, 2009; Cohen et al. 2011).
  - Both imports and domestic production may pose similar threats for supply security (Luciani, 2004; Mitechell, 2002).
- Studies using similar methods
  - Effects of the 2008 financial crisis on the linkages among the oil, gold, and platinum markets (Aruga and Kannan, 2020).

### Methods: assumptions

There is not a consistent definition for energy security.

Due to the unclear nature of the energy security phenomenon, we consider energy security based on the definition of the International Energy Agency (IEA):

- "uninterrupted availability of energy sources at an affordable price" (IEA. Energy Security. 2019).
- "physical availability of energy and prices."

This study focuses on the price-dimension of energy security.

### Methods: quantitative methods



### Data: domestic coal market indices

- Polish steam coal market indices
  - PSCMI1(PLN/GJ): steam coal fines sold to the power sector and industrial power plants.
  - PSCMI2(PLN/GJ): steam coal fines sold to industrial and municipal heating plants, other industrial consumers and others.

# Data: international gas and coal prices

- Natural gas: monthly Russian natural gas border price in Germany (USD/BTU).
- International coal: monthly Australian thermal coal price (USD/MT).

![](_page_9_Figure_5.jpeg)

![](_page_9_Figure_6.jpeg)

Proceedings of The 1st IAEE Online Conference, 7th - 9th June 2021

### Unit root tests

|             | Level |       |          |                | First differences |            |        |                |  |
|-------------|-------|-------|----------|----------------|-------------------|------------|--------|----------------|--|
|             | ADF   | PP    | KPSS     | LS (two break) | ADF               | РР         | KPSS   | LS (two break) |  |
| PSCMI1      | -0.88 | -0.87 | 0.70 **  | -4.85          | -9.69 ***         | -9.69 ***  | 0.43 * | -11.39 ***     |  |
| PSCMI2      | -1.12 | -1.10 | 0.56 **  | -5.19          | -11.30 ***        | -11.20 *** | 0.28   | -13.11 ***     |  |
| Coal        | -1.82 | -1.93 | 0.36 *   | -4.67          | -7.32 ***         | -7.27 ***  | 0.34   | -8.25 ***      |  |
| Natural gas | -1.53 | -1.09 | 0.79 *** | -3.98          | -2.89 *           | -8.83 ***  | 0.16   | -10.31 ***     |  |

ADF, PP, and KPSS unit root tests include only a constant. \*\*\*, \*\*, and \* denotes significance at 1%, 5%, and 10% respectively.

### Johansen test

| Variables        | H <sub>0</sub> : rank=r | Trace stat. | Max-Eigen stat. |              |
|------------------|-------------------------|-------------|-----------------|--------------|
| Coo vo DSCMI1    | r=0                     | 5.12        | 4.30            |              |
| Gas vs FSCIVIII  | r<=1                    | 0.82        | 0.82            |              |
| Coo vo DSCMI2    | r=0                     | 6.50        | 5.43            |              |
| Cas vs r SCIVII2 | r<=1                    | 1.07        | 1.07            |              |
| DSCMI1 No DSCMI2 | r=0                     | 12.84       | 11.97           |              |
|                  | r<=1                    | 0.87        | 0.87            |              |
|                  | r=0                     | 22.83 **    | 16.73 **        |              |
|                  | r<=1                    | 6.09        | 6.09            |              |
|                  | r=0                     | 23.92 **    | 19.08 **        | Cointegrated |
|                  | r<=1                    | 4.84        | 4.84            | Contegrated  |
|                  | r=0                     | 26.85 ***   | 21.89 **        |              |
|                  | r<=1                    | 4.97        | 4.97            |              |

\*\*\* and \*\* denotes significance at 1% and 5% levels.

# Bierens-Martins time-varying cointegration test

| Variables      | Cheby shev Time<br>Poly nomials | Test statistic | P-value |
|----------------|---------------------------------|----------------|---------|
|                | m=1                             | 9.18 **        | 0.010   |
| Coal vs Gas    | m=2                             | 27.86 ***      | 0.000   |
|                | m=4                             | 40.11 ***      | 0.000   |
|                | m=1                             | 1.45           | 0.484   |
| Coal vs PSCMI1 | m=2                             | 9.45 *         | 0.051   |
|                | m=4                             | 31.22 ***      | 0.000   |
|                | m=1                             | 2.94           | 0.230   |
| Coal vs PSCM12 | m=2                             | 5.41           | 0.247   |
|                | m=4                             | 27.12 ***      | 0.001   |

![](_page_12_Picture_7.jpeg)

All relationships contain time varying component

Note: \*\*\* and \*\* denote significance at the 1% and 5% levels, respectively.

### Recursive cointegration test

![](_page_13_Figure_6.jpeg)

### Gregory-Hansen test

|                  | ADF            |             | Z <sub>t</sub> |             | Ζα                 |             | _                     |                             |
|------------------|----------------|-------------|----------------|-------------|--------------------|-------------|-----------------------|-----------------------------|
| Variables        | test statistic | Break point | test statistic | Break point | <br>test statistic | Break point | _                     |                             |
| Gas vs PSCMI1    | -4.82 *        | May, 2015   | -4.87 *        | May, 2015   | <br>-41.36         | Jul., 2015  | _                     |                             |
| Gas vs PSCMI2    | -5.50 **       | Jul., 2015  | -5.59 ***      | Jul., 2015  | -48.76 **          | Jul., 2015  | $\square \rightarrow$ | Gas and PCMI2 cointegrated  |
| PSCMI1 vs PSCMI2 | -4.49          | Oct., 2016  | -4.43          | Nov., 2016  | -35.99             | Nov., 2016  |                       |                             |
| Coal vs Gas      | -4.93 *        | Apr. 2016   | -4.38          | May, 2016   | -32.01             | May, 2016   |                       |                             |
| Coal vs PSCMI1   | -4.99 *        | Aug. 2016   | -4.96 *        | Aug. 2016   | -37.68             | Aug. 2016   |                       | Coal and PCMI1 cointegrated |
| Coal vs PSCMI2   | -4.60          | Apr. 2016   | -4.55          | Jul., 2016  | -33.56             | Jul., 2016  |                       |                             |

\*\*\*, \*\*, and \* denotes significance at 1%, 5%, and 10% respectively.

Conclusions

### Conclusions: summary of findings

PSCMI1 (power marketoriented coal) linked with the international coal market?

![](_page_15_Figure_7.jpeg)

PSCMI2 (heating marketoriented coal) linked with the international gas market?

![](_page_15_Figure_9.jpeg)

Proceedings of The 1st IAEE Online Conference, 7th - 9th June 2021

## Implications

- The electricity sector exhibits energy security as long as the domestic coal market remains self-sufficient.
- Energy security might be questioned for the heating sector as Poland rely natural gas on imports.
- Energy security analysis is highly context dependent.

# Thank you for listening!

Please contact the following presenter for further questions: kentaka.aruga@gmail.com

Proceedings of The 1st IAEE Online Conference, 7th - 9th June 2021