Price guarantee and subsidy in windfarm auctions

Xinyu Li

Marco Haan, Sander Onderstal, Jasper Veldman

Centre for Energy Economics Research
Faculty of Economics and Business
University of Groningen

1st IAEE online conference
June 2021
Wind power

- Worldwide challenge ahead: renewable-energy transition
- Wind power is an important renewable-energy technology
- Governments worldwide have opened locations for wind farms
- Aims: Promoting wind energy, efficiency, transparency, revenue
- Tool: Auctions (globally, 2.17 GW in Q2 2020)
 - US: cash auction (ascending clock)
 - UK: contract for difference auction, royalty+cash auction (pay-as-bid)
 - Germany: strike price auction (pay-as-bid)
How to auction wind farm licenses?

Auction design problem
• Selecting the most cost-efficient electricity producer
• Inducing the winning electricity producer to build and maintain the windfarm

Policy instruments
• Price guarantee
• Price subsidy

Method
• Lab experiment
Our setting mimics real-life features of wind-farm auctions

• Uncertain electricity price in the future, which implies uncertain revenue for bidders
• The winner invests before knowing the electricity price
• Bidders face a common uncertainty about how costly it is to build the windfarm
• Bidders differ in production efficiency
• Bidders are protected by limited liability
Our setting

- n bidders
- First-price sealed-bid auction (pay-as-bid)
- Bidder i’s payoffs when winning: $pq_i - \frac{(q_i)^2}{2\gamma_i} - X$
- Fixed costs $X = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - x_i: bidder i’s private signal about the fixed costs
 - $x_i \sim U[0,300]$ i.i.d.
- Productivity γ_i private information
 - $\gamma_i \sim U[6,10]$ i.i.d.
- Electricity price $p \sim U[10,20]$
Experimental design

<table>
<thead>
<tr>
<th></th>
<th>No price guarantee</th>
<th>Price guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>No subsidy</td>
<td>$p \sim U[10,20]$</td>
<td>$\bar{p} = 15$</td>
</tr>
<tr>
<td>Subsidy</td>
<td>$p + s \sim U[13,23]$</td>
<td>$\bar{p} + s = 18$</td>
</tr>
</tbody>
</table>

- Between subjects
- Fixed groups, $n = 3$, 16 groups per treatment (4x16x3=192 participants)
- 25 rounds
- Subjects start with an endowment €12
- Bidder’s payoff = max {endowment + earnings over 5 random rounds, €4}
Hypotheses (based on risk averse bidders)

- The government’s expected payoff: \(G = E\{\lambda q + b^{(1)} - sq\} \)
- Subsidy: \(s = 3, \lambda = 7 \)
- H1: \(G \) is greater with subsidy than without
- H2: \(G \) is greater with price guarantee than without
First glance at the data

Variance of government payoff

<table>
<thead>
<tr>
<th></th>
<th>NSNG</th>
<th>NSYG</th>
<th>YSNG</th>
<th>YSYG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>266</td>
<td>202</td>
<td>210</td>
<td>206</td>
</tr>
</tbody>
</table>
Conclusion (preliminary)

- **Government payoff** greater with **price guarantee**
 - The price guarantee boosts efficiency
 - The price guarantee boosts bids

- **Government payoff** only greater with **subsidy** in the case of a price guarantee

- The price guarantee and the subsidy combined dampen **government payoff volatility**

- The auction + price guarantee + subsidy is easy to implement and may revolutionize the way in which windfarm locations are allocated