On the Role of Electricity Storage in Capacity Remuneration Mechanisms

Christoph Fraunholz, Dogan Keles, Wolf Fichtner | IAEE Online Conference – 8 June 2021
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Regulatory framework

- Capacity mechanisms are used around the world to secure sufficient firm capacity
- Formally, technology neutrality is a requirement in Europe and the US (European Commission, 2013; Sakti, Botterud, and O’Sullivan, 2018)
- In practice, rules for storage participation differ
 - PJM: like conventional units (Chen et al., 2017)
 - CAISO: full output for 4 h (Usera et al., 2017)

⇒ In what way does the parametrization of capacity mechanisms affect the future technology mix and long-term generation adequacy?
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Generic Capacity Auction Mechanism

Central buyer mechanism with reliability options (used in, e.g., Italy, Ireland)

Characteristics
- Regulator determines firm capacity requirement and other parameters
- Successful participants are rewarded with the marginal capacity price of the auction
- Capacity derating factors may be used, e.g., for storage units
- Combination with call options
 - Price cap on the day-ahead market
 - Regulator collects peak energy rent
 - Implicit penalty for non-availability during scarcity periods

Bidding strategy

Capacity remuneration should cover the difference costs DC:

$$DC = \max \left(-NPV, 0 \right)$$

With some simplifications follows the indifference bid price p^{CRM}:

$$p^{CRM} = \frac{k_1}{f^{derate}} \cdot \max \left(k_2 \cdot c^{invest} - CM(p^{limit}), 0 \right)$$

The resulting technology mix is driven by the relation of

- investment expenses c^{invest},
- contribution margin CM (indirectly: strike price p^{limit}),
- derating factor f^{derate}.

⇒ *Focus of this talk: Combination with call options and variation of the strike price*
Combination with Call Options

Contribution margins in a stylized example of the day-ahead market in the future

- Contribution margin: $CM = p - c_{\text{var}}$
- Break-even point: $p = c_{\text{var}}$
- Strike price: p^limit
- Storage capacity: C^{stor}
- Storage efficiency: η^{stor}

\[CM^{\text{stor}} > CM^{\text{conv}} \iff \begin{cases} p^\text{high} (1 - \eta^{\text{stor}}) < c_{\text{var}}^{\text{CONE}}, & \text{for Cases 1/2a} \\ p^\text{limit} (1 - \eta^{\text{stor}}) < c_{\text{var}}^{\text{CONE}}, & \text{for Case 2b} \end{cases} \]

- Case 1: No Regulator
 - Storage unit: $B + D + F - A$
- Case 2a: Yes Storage operator
 - Storage unit: $D + F - A - C$
- Case 2b: Yes Regulator
 - Storage unit: $D + F - A$

Under some reasonable assumptions, storage units counterintuitively benefit from a strike price.
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Agent-Based Electricity Market Simulation Model PowerACE

Selected characteristics
- Time horizon 2020–2050 with 8760 h/a
- Day-ahead market simulation (daily)
- Investment decisions (yearly)

Input
- Power plant fleets of the base year
- Fuel and carbon prices
- Hourly electricity demand
- Hourly renewable feed-in
- Transfer capacities between market areas

Output
- Hourly day-ahead market prices
- Hourly dispatch (power plants, storages)
- Investment decisions (power plants, storages)
Model Assumptions and Scenario Setup

Some key assumptions

- Simulation period: 2020–2050 at hourly resolution (8760 h/a)
- Regional scope: Selection of ten European countries with diverse electricity market designs
- Renewable share in electricity demand reaching 80% by 2050
- Carbon prices increasing to 150 EUR/t\(\text{CO}_2\) in 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Electricity market designs</th>
<th>Strike price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOM</td>
<td>European EOM</td>
<td>n/a</td>
</tr>
<tr>
<td>CRM</td>
<td>National CRM policies</td>
<td>none</td>
</tr>
<tr>
<td>CRM-limit_high</td>
<td>National CRM policies</td>
<td>(1.5 \cdot c_{\text{var}}^{\text{CONE}})</td>
</tr>
<tr>
<td>CRM-limit_low</td>
<td>National CRM policies</td>
<td>(c_{\text{var}}^{\text{CONE}})</td>
</tr>
</tbody>
</table>

\(c_{\text{var}}^{\text{CONE}}\) – variable cost of new entry, CRM – capacity remuneration mechanism, EOM – energy-only market
Reference Scenario (European Energy-Only Market)

Simulated development of conventional power plant and storage capacities in France

⇒ Fuel switch towards gas-fired power plants and expansion of utility-scale storages
Simulated development of conventional power plant and storage capacities in France

CCGT—combined cycle gas turbine, OCGT—open cycle gas turbine

Technology composition affects both renewable integration and generation adequacy
Deterministic indicators describing generation adequacy level in France (Ø 2020–2050)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Strike price</th>
<th>No market clearing</th>
<th>Energy not served</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOM</td>
<td>n/a</td>
<td>10.7 h/a</td>
<td>60.5 GWh/a</td>
</tr>
<tr>
<td>CRM</td>
<td>none</td>
<td>0.0 h/a</td>
<td>0.0 GWh/a</td>
</tr>
<tr>
<td>CRM-limit_high</td>
<td>$1.5 \cdot c_{\text{CONE}}^{\text{var}}$</td>
<td>1.6 h/a</td>
<td>3.7 GWh/a</td>
</tr>
<tr>
<td>CRM-limit_low</td>
<td>$c_{\text{CONE}}^{\text{var}}$</td>
<td>5.1 h/a</td>
<td>16.2 GWh/a</td>
</tr>
</tbody>
</table>

$c_{\text{CONE}}^{\text{var}}$ – variable cost of new entry, CRM – capacity remuneration mechanism, EOM – energy-only market

\Rightarrow *Nameplate capacity of electricity storage should be adequately derated (for details see paper)*
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Conclusion and Policy Implications

Key take-aways of this talk

- Design of capacity remuneration mechanisms inevitably creates a bias towards one technology or the other
- Linking the capacity auctions with call options increases the competitiveness of storages against conventional power plants
- Determining the capacity credit of non-conventional resources is challenging and can strongly affect generation adequacy
- For additional details see paper on the right (open access)

Contact details – feel free to get in touch

Christoph Fraunholz
Karlsruhe Institute of Technology (KIT), Chair of Energy Economics
Mail: christoph.fraunholz@kit.edu, Phone: +49 721 608-44668

⇒ Thank you for the attention! Any questions or comments?

https://doi.org/10.1016/j.enpol.2020.112014
Literature I

Literature II

