

MARKETS VS. LISTED PRICING FOR ACCESS TO DISTRIBUTION NETWORKS

Christine Brandstätt & Rahmat Poudineh

June 9th 2021, 1. IAEE Online Conference 2021

OUTLINE

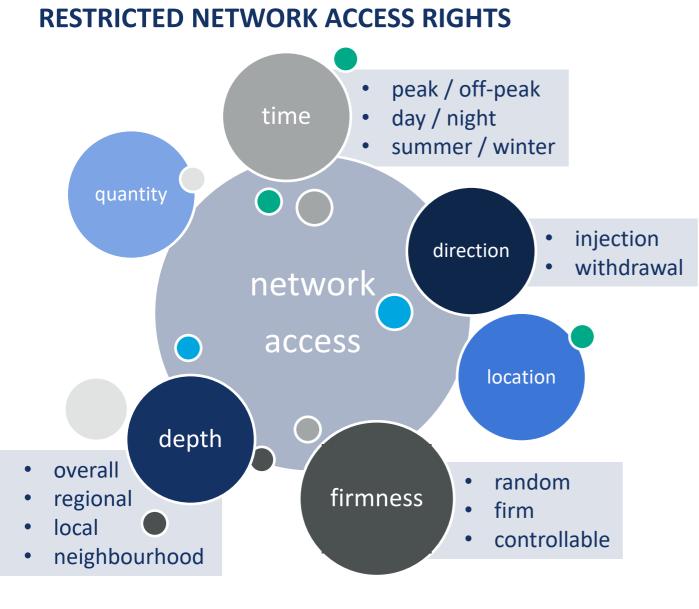
- 1. Motivation
- 2. Restricted Network Access
- 3. Listed Prices vs. Market-Based Allocation
- 4. Conditions for Equivalence
- 5. Design Options
- 6. Implications in Practice
- 7. Conclusion and Outlook

MOTIVATION

historically

- users have universal access rights to their full connected capacity at listed prices
- network operator supplies corresponding capacity at minimum cost

ecently


 listed pricing for small restrictions in access rights

 buy back from the network operator to correct previously assigned universal access

future?

assign restricted access in a market-based way

analyse markets for differentiated access to network capacity as an alternative (or complement) to universal access and listed pricing

THE OXFORD INSTITUTE FOR ENERGY STUDIES

examples:

- heat pump accepts controllable access for withdrawal during the day, rather than random access all day
- electric vehicle has access to additional capacity at the workplace rather than at home
- PV has access for injection into the neighbourhood only, not to sell to users connected via transmission grid
- assigned with certain advance
- possibly in bundles
- traded subsequently

ALLOCATION OF UNIVERSAL ACCESS

- utility for universal access is combined utility for peak & off-peak
 - decreases for 2nd unit as no utility from a second unit of off-peak

via listed prices

- price for access to both periods at capacity cost
- users with utility /willingness to pay ≥ capacity cost buy access

via auction market

- users bid truthfully
- network operator accepts all bids ≥ capacity cost

in both settings

- network operator builds capacity of 5 units at cost of 15
- > all demands obtain a first unit, demand 2 and 3 obtain a second
- demand surplus of 6 (sd1=0, sd2=2, sd3=5)

N ₁	L_1	N ₂ ●
g_1		d_1, d_2, d_3

capacity cost	3

		user 1	user 2	user 3
units demanded	off-peak	1	1	1
	peak	2	2	2
utility per unit	off-peak	1	2	3
	peak	2	3	4
combined utility	1st unit	3	5	7
	2nd unit	2	3	4

ALLOCATION OF RESTRICTED ACCESS

 $\begin{array}{c|c} N_1 & N_2 \\ \bullet & L_1 & \bullet \\ g_1 & d_1, d_2, d_3 \end{array}$ capacity cost 3

				user	1	use	er 2	u	ser 3
units demanded		of	-peak	1		1	L		1
		ed pe	-peak ak	2	2		2	2	
utility per unit			-peak	1 2		2		3	
		ре	ak	2		3		4	
pairs	off-peak	u3:3	u2:2	u1:1					
	peak	u3:4	u3:4	u2:3	u	2:3	u1:	2	u1:2
pair v	w2p	7	6	4		3	2		2

utility for restricted access is per peak & off-peak period

via listed prices

- price for access to peak period at capacity cost
- access to off-peak period at variable cost (here 0)

via auction market

- users bid truthfully
- network operator pairs and sorts bids
- accepts all bid pairs with willingness to pay ≥ capacity cost

in both settings

- network operator builds capacity of 4 units at cost of 12
- > all demands obtain off-peak access, 2 and 3 also obtain peak
- demand surplus of 6 munits (sd1=1, sd2=2, sd3=5)

C. Brandstätt

EQUIVALENCE UNDER OPTIMAL CONDITIONS

preconditions:

- network operator has incentives to build optimal capacity
 - monopoly regulation necessary with pricing and auctions alike
- knowledge of long-term marginal cost of the network
 - difficult to precisely distinguish cost for different parts of the network and different types of uses
 - affects pricing and auctions alike
- knowledge of network users utilities
 - projected based on past manifestations for listed pricing
 - revealed via market allocation, but prone to strategic behaviour and market power
 - > benign circumstances for demand revelation can be created via market and product design

	universal access			restricted access			
	user1	user2	user3	user1	user2	user3	
off-peak units	1	1	1	1	1	1	
peak units	1	2	2	0	2	2	
utility	3	8	11	1	8	11	
cost	3	6	6	0	6	6	
surplus	0	2	5	1	2	5	

AUCTION DESIGN

repetitions

-short access periods -closer to real-time

- + more attractive chances for entrants
- + higher predictability for demand
- + lower likelyhood of default via bankruptcy
- enables learning, signalling and retaliation
- less certainty for capacity investment
- higher transaction cost

bid transparency

- sealed / anonymous > open bids
 descending > ascending auctions
- + prevent learning and signalling
- + encourages involvement of weaker bidders
- reinforces uncertainty about common valuations

pricing rules

- uniform > discriminatory price
- trigger price
- second price rule (at margin)
- reserve price
- + encourages truthhful bidding / reveals demand
- + reduces winners curse / auction inefficiency
- + introduces quantity risk
- may limit revenue and efficiency

DESIGN OPTIONS II

allowing resale

- + corrects allocation via grandfathering or uninformed listed prices
- + reduces risks of long-term products
- + helps develop capacity efficiently
- legitimizes transfers between colluding competitors
- shifts surplus from regulated operator to private parties
- higher transaction cost

encouraging resaleuse-it-or-loose-it/trade-it/-payallowing intermediaries

- + prevent predatory behaviour
- + encourages involvement of weaker bidders
- + anticipating future competition with long-term products

IMPLICATIONS IN PRACTICE

wind generator in export constrained part of the grid

- benefits from differentiating access, e.g. peak, local or curtailable access
- benefits from adapting access rights over time
- challenge of entry deterring by incumbents
 - less relevant in congestion-blind electricity markets
 - network operators can adapt capacity via grid enhancing technology or forced curtailment
- challenge of monopsony power for incumbents
 - short access periods increase competition, in theory also help collusion, but likely detectable in small, clearly arranged network sections
 - potential for intermediaries

electric vehicles in import constrained part of the grid

- benefits from differentiating access, e.g. peak, local or curtailable access
- challenge of assessing value of flexibility for inexperienced users
 - optional universal access and price taking bids
 - aggregators to mediate complexity and limit transaction cost
- challenge of monopsony power for incumbents
 - likely detectable with uniform household user types
 - risky when curtailment is linked to value of access rights

CONCLUSIONS AND OUTLOOK

constantly evolving distribution grids with increasingly flexible users

- restricted network access helps to coordinate different aspects of network use
- market-based allocation enables continuous adjustment of capacity allocation trend towards market-based allocation of access rights.

preconditions: adequate design of products and market rules

- balance between short- and long-term allocation (competition, risks)
- balance between complexity and individual fit (efficiency, transaction cost)
- control market power
 - adjust to specific setting (substitutable / complementary access, prevent learning / signalling)
 - facilitate detection and antitrust
- reveal value of access and thus inform regulation and efficient system development (e.g. uniform pricing)

concerns in addition to efficient allocation

- social: not entirely rational, unexperienced users
- political :hesitation to rely uncertain price-based reactions for security of supply

THANK YOU FOR YOUR TIME AND ATTENTION.

ANY QUESTIONS OR COMMENTS?

Christine Brandstätt

Research Associate - Energy Economics Bremen Energy Research | Jacobs University Bremen Campus Ring 1|28759 Bremen | Germany c.brandstaett@jacobs-university.de

C. Brandstätt