

ENSURING FLEXIBILITY DELIVERY: THE ROLE OF PENALTIES ON LONG-TERM DISTRIBUTION FLEXIBILITY TENDERS

Felipe GONZALEZ VENEGAS Marc PETIT Yannick PEREZ

1st IAEE Online Conference 2021

UNIVERSITE PARIS-SACLAY

RESEARCH & DEVELOPMENT

STELLANTIS

Electromobility research: Chaire Armand Peugeot

- Grid integration and flexibility services (V2G)
- Charging infrastructure deployment
- Electromobility business models
- Coordination services for long trips

AGENDA

Flexibility for distribution grids

Long-term flexibility tenders and the role of penalties

Case study: EV fleets participation according to penalty conditions

Conclusions

CONTEXT

INCREASING NEED FOR FLEXIBILITY

Power systems are facing serious challenges:

- Integration of distributed generation
- Electrification and new uses (mobility, heating, IT...)

Significant investments to upgrade infrastructure

Using *flexibility* can help distribution grid operation and planning

EVs can provide flexibility to the grid ! - smart charge and V2G

- Creating value for grid operators, aggregators, BRPs, end-users
- Lowering total cost of ownership for end-users

CONTEXT

USING FLEXIBILITY AT THE DISTRIBUTION LEVEL

Different frameworks to unlock flexibility

- Network tariffs
 - From uniform/static to locational and variable
- Flexible (smart) connections
 Allowing faster or less costly connections
 From 'firm' capacity to 'variable'

• Market-based

Short-term flexibility markets

Long-term tenders (UK, France)

FLEXIBILITY TENDERS - HOW DO THEY WORK?

Identification of zones and periods where congestion might occur

- Availability required during months/weeks
- Activation in real-time, a few time per year (<10)

Contracts for 1-7 years for flexibility provision Results from UKPN 2020 tenders show potential high value of flexibility

WHY HAVING LONG-TERM TENDERS?

When using flexibility as an alternative to investment deferral, DSOs need to be sure flexibility will be available when needed.

- High risks if only relying in short-term local markets **Risk sharing through long-term contracts**
- Providing security of flex availability
- Ensuring revenues to flex operators
 Penalties to ensure flexibility delivery when needed
- UKPN: low penalties to foster competition
- Enedis: aligned with balancing mechanism (system-wide)

Ensuring reliable flexibility can be a challenge for variable resources aggregators (EVs, DR)

• What is the impact of penalties on the participation of these resources?

METHODOLOGY & CASE STUDY

METHODOLOGY FOR EV FLEET PARTICIPATION

Simulation based methodology that mimics the tender process

- **First stage:** Participation evaluation (bid), considering expected EV usage patterns and tender conditions.
- **Second stage:** Performance evaluation, simulation of flexibility activations and computing remuneration.
 - Considering penalties!

Gonzalez Venegas, Petit, Perez, *Participation of electric vehicle fleets in local flexibility tenders: analyzing barriers to entry and workable solutions*, EUI-FSR Working papers, Feb, 2021. https://fsr.eui.eu/publications/?handle=1814/69860

CASE STUDY ON EV FLEETS

EV fleets cases

Case study using real data from demo projects (Parker, DK; Electric Nation, UK):

- Company fleet: Always plugged-in
- Commuter fleet: Average plug-in 5 days/week

Tender cases Two availability windows in study:

- Evening (5pm-8pm)
- Full-day

Three penalty conditions:

• Low, medium, high

Scenario	Case	Threshold	Penalties
Low	UKPN	60%	0%
Medium	Enedis	80%	35%
High	-	90%	70%

RESULTS

VARIABLE AVAILABILITY PROFILES

IMPACT OF PENALTIES ON AGGREGATORS BIDS

We simulated flexibility activations and computed remuneration and risk (C-VaR) for bids at different confidence levels

- For high-reliability cases (Company + Evening window), penalties don't have much impact.
 ⇒ Fleet will bid the maximum flexibility
- For low-reliability cases (Commuter), penalties affect the optimal bid level
 - ⇒ A trade-off between expected revenue and risk
 - ⇒ High penalties make aggregators propose only high-confidence bids

IMPACT OF PENALTIES ON AGGREGATORS BIDS

We simulated flexibility activations and computed remuneration and risk (C-VaR) for bids at different confidence levels

- For high-reliability cases (Company + Evening window), penalties don't have much impact.
 ⇒ Fleet will bid the maximum flexibility
- For low-reliability cases (Commuter), penalties affect the optimal bid level
 - ⇒ A trade-off between expected revenue and risk
 - ⇒ High penalties make aggregators propose only high-confidence bids

PENALTIES

ARE PENALTIES ENSURING DELIVERY?

The low penalty scenario allow fleets to bid high levels of unreliable flexibility

- The unsuccessful activations (UA) reach >40%
- Additional measures can limit this effect (ban from market if repeated failure)
 Higher penalties ensure higher flexibility delivery
- But limit the amount of flexibility available to the DSO
 - => A trade-off between lowering entry barriers and flexibility reliability

	Penalty Scenario	Evening		Full-day	
Fleet		Bid [kW/EV]	UA [%]	Bid [kW/EV]	UA [%]
Company	Low	7,3	0,0%	7,3	29,0%
	Medium	7,3	0,0%	7,3	32,3%
	High	7,3	0,0%	2,9	23,8%
Commuter	Low	3,0	9,6%	4,1	45,5%
	Medium	2,0	4,4%	1,2	17,7%
	High	1,6	2,9%	0,8	9,8%

UA: Unsuccessful activations

CONCLUSIONS

Flexibility tenders enable DSOs to procure flexibility for the long-term

- They ensure flexibility availability for DSOs as well as revenue certainty for flex operators
- First step to build liquid local flex markets

Penalties are needed to ensure flexibility delivery

• A trade-off between reliability and volume

Different penalty strategies have been implemented

- UKPN has a low penalty strategy to allow participation to new actors => Learning by doing effects
- Enedis focuses on higher reliability and standardization with national markets

Alternative measures can be designed to increase participation in local markets

- Implementing well-defined availability windows
- Allowing for firm + variable flexibility bids

THANKS! ANY QUESTIONS?