Carbon Policy and the Emissions Implications of Electric Vehicles

Kenneth Gillingham* Marten Ovaere** Stephanie Weber[†]

- * Yale University and NBER
 - ** Ghent University
 - † Yale University
 - IAEE Conference
 - June 8, 2021

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ のへで

Motivation: Overlapping and interacting policies

Overlapping and interacting policies can create unintended consequences

- Price policies are considered additive
- And overlapping quantity policies can be substitutes
 - e.g., Goulder et al. (2012), Perino et al. (2019)
- It gets more complicated when you mix them

• e.g., Fischer et al. (2013)

Motivation: Electric vehicles (EVs)

- Decarbonizing transport is challenging
- Extensive policy support for EVs:
 - Fuel economy standards with generous EV credits
 - Tax credits
 - Gasoline/diesel car bans
- EVs are only 5% of global sales in 2020, but projections have them rising fast
- \$200 billion in EV R&D over next 5 years (AlixPartners)

GM's announcement (Jaguar and Volvo just followed)

G.M. Will Sell Only Zero-Emission Vehicles by 2035

The move, one of the most ambitious in the auto industry, is a piece of a broader plan by the company to become carbon neutral by 2040.

General Motors plans an electric Hummer pickup, with a high-end version duein showrooms this falls 🕨 👘 🚊 🖉

Is there an interaction between carbon and EV policy?

- Does a carbon price influence the emission reductions from more EVs?
 - A cleaner electric grid might mean that EVs lead to greater emission reductions
 - But what matters is the generation on the margin
 - A carbon price may influence what is on the margin

Related literature

- Work on overlapping and interacting policies
 - Gerarden et al. (2020), Goulder et al. (2012), Fischer et al. (2013), Bohringer & Rosendahl (2010), etc.
- Growing work on electric vehicles
 - Rapson and Muehlegger (2020), Holland et al. (2016), Graff-Zivin et al. (2014), Li (2020), Springel (2020), Zhou & Li (2018), Li et al. (2017), Xing et al. (2020), etc.

This paper

- Explores complementarity between carbon policy and high EV penetration
 - Use **theory** to show the conditions for when a carbon price could lessen the emission reductions from EVs
 - Empirically demonstrate this effect using recent data
 - Use a detailed dynamic **simulation** of the electricity and transportation sectors to show effects to 2050
- Our findings show that a moderate carbon price could reduce the emission reductions from EVs in many regions

Introduction

Conceptual Framework

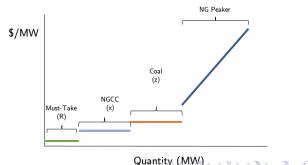
Empirical Evidence

Dynamic Simulation

Conclusions

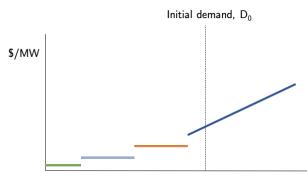
Introduction

Conceptual Framework


Empirical Evidence

Dynamic Simulation

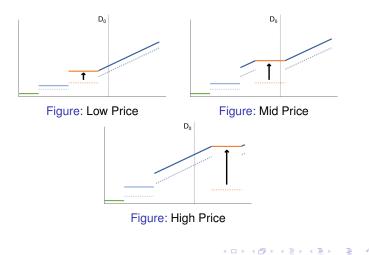
Conclusions


Static illustrative model of electricity supply

- 4 plant types (must-take, combined cycle, coal, and natural gas peakers) in a competitive market, where each plant type *j* has a CO₂ emissions factor β_i
- Must-take, NGCC, and coal have flat marginal cost curves
- Natural gas peakers have increasing marginal cost

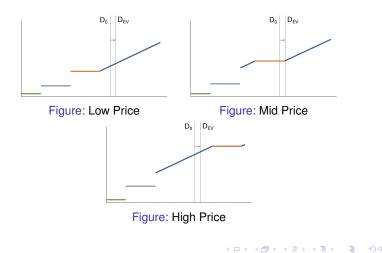
Electricity demand

Initial inelastic demand, D₀



Quantity (MW)

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 二語


Effect of a carbon price

- Carbon price τ increases marginal cost for plant *j* by $\beta_i \tau$
 - The magnitude of τ determines the extent of the reordering

Effect of electric vehicles added

• EVs added to the grid by an additional policy will use kWh by the marginal generator

Introduction

Conceptual Framework

Empirical Evidence

Dynamic Simulation

Conclusions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empirical exercise

- Goal: Explore if this effect exists in the data
- But nearly no carbon pricing in much of the United States
- Our basic strategy: use changes in the ratio of the natural gas to coal costs
 - Analogous strategy to Cullen & Mansur (2017)
 - Idea is that a carbon price will increase the marginal costs of coal plants relative to gas plants
 - So we exploit variation in the ratio of coal to gas prices

Data

- Hourly load and hourly net generation by source
 - From four ISOs: ERCOT, MISO, PJM, SPP
- Plant-level monthly data on coal and gas fuel expenditures, generation, fuel consumption (EIA Form 923)
 - Allows us to calculate the variable fuel cost per MWh for every month
 - We match plants to regions and calculate generation-weighted monthly gas and coal prices
- Data cover Jan 2014-Dec 2019

Map of Electricity regions

▲日 → ▲御 → ▲唐 → ▲唐 → ▲ ● ▲

Variation in the coal-to-gas price ratio

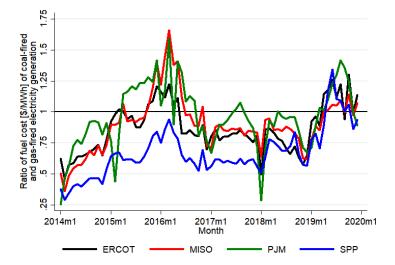


Figure: Ratio of the variable fuel cost of coal-fired to gas-fired electricity generation by month.

Variation put in terms of carbon prices

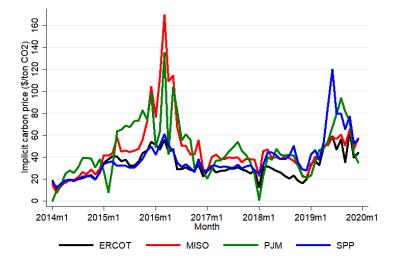
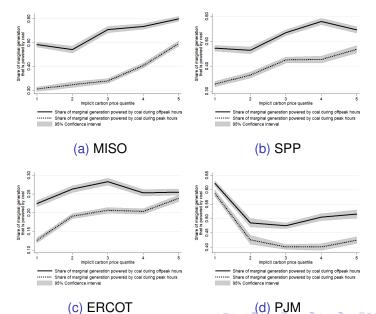


Figure: Implicit carbon price (normalized to PJM in 2014m1) corresponding to the coal-gas price ratio.

Empirical specification

Similar to Holland et al. (2016), the generation from coal and gas for each region is given by:

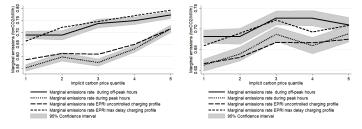
$$q_{ft} = \sum_{p \in \{\text{peak}, \text{offpeak}\}} \beta_p \mathbf{1}(peak)_p \textit{load}_t + \gamma_S q_{\text{solar},t} + \gamma_W q_{\text{wind},t} + \delta_{tmy} + \epsilon_{ft}$$


where

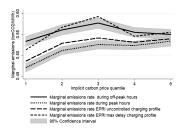
- q_{ft} is hourly output for fuel f in hour t
- 1(*peak*)_p is a dummy for 7am-10pm
- *load*_t is electricity demand in the region
- δ_{hmy} are hour-of-the-day \times month-of-sample fixed effects

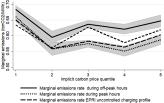
Empirics

- We run our specification separately for ranges of implicit carbon price ratios
 - These are based on splitting the sample into roughly equal parts for each region based on the ratio
 - Quantiles at: \$8, \$27, \$35, \$40, \$50, and \$120/ton
- Idea is to see how different carbon prices would change the dispatch decision
 - Focus is on coal and where coal is in the merit order
 - Remaining share is almost entirely natural gas
 - Renewables and nuclear are almost always inframarginal


Marginal generation from coal rises with CO₂ price

• • • • • •


æ


CO₂ emission rate on the margin rises with CO₂ price

(a) MISO

(b) SPP

----- Marginal emissions rate EPRI max delay charging profile 95% Confidence interval

(d) PJM

□ > < fi

(c) ERCOT

Introduction

Conceptual Framework

Empirical Evidence

Dynamic Simulation

Conclusions

Why a dynamic simulation?

- Results so far tell us about the marginal emissions in the short run based on changes in dispatch
- But what about the long run?
 - Demand will not be perfectly inelastic
 - The increase in electricity demand from EVs may be inframarginal
 - Retirements of old plants
 - Builds of new plants
 - Renewables will be getting cheaper

Our approach

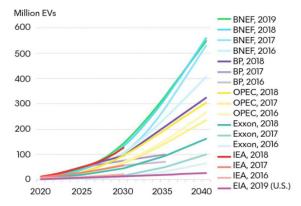
The National Energy Modeling System ("Yale-NEMS")

- Developed by the Energy Information Administration
- Used to produce the Annual Energy Outlooks (AEO) and many analyses
 - Brown et al. (2001), Auffhammer & Sanstad (2011), Brown et al. (2011), Bordoff & Houser (2014), Gillingham & Huang (2019), Small (2013), Gallagher & Collantes (2008)

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

- 13 modules covering all major sectors and macroeconomic feedbacks
- Model runs through 2050
- Regional disaggregation varies by module

Schematic of Yale-NEMS


▲口> ▲御> ▲注> ▲注> 「注」の文(で)

Primary scenarios

- Reference case (similar to AEO)
- High EV demand (based on Bloomberg New Energy Finance)
- Carbon pricing (starting at \$2/ton and rising to \$30/ton by 2040)
- High EV demand + carbon pricing policies

BNEF global scenario

EV Outlooks then and now

Source: Bloomberg/NEF, organization websites. Note: BNEF's 2019 outlook includes passenger and commercial EVs. Some values for other outlooks are BNEF estimates based on organization charts, reports and/or data (estimates assume linear growth between known data points). Outlook assumptions and methodologies vary. See organization publications for more.

Our modeled EV penetration

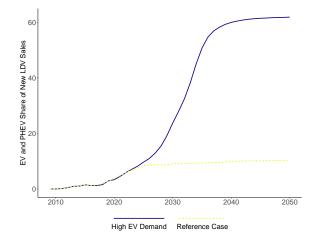


Figure: Share of new car sales that are EVs or PHEVs in the high EV demand case compared to the reference case.

EVs powered by coal under moderate carbon price?

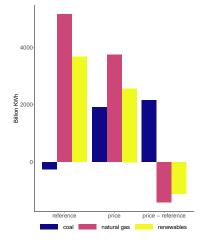


Figure: Additional generation associated with extra EVs, with and without a carbon price (sum over 2020-2050). The rightmost bars are the difference between the effects with and without a carbon price.

Coal generation increases due to EV demand

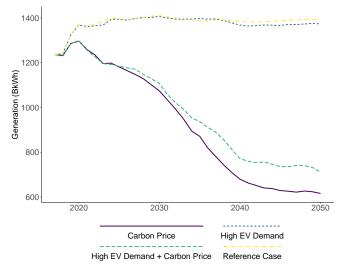


Figure: Total generation from coal.

Most of effect is from delayed coal plant retirements

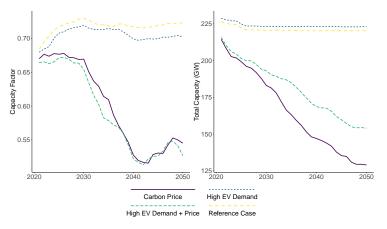
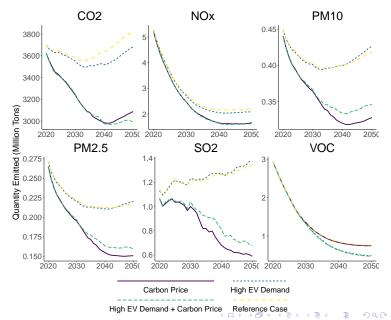



Figure: Coal capacity factor and total capacity.

Combined emissions

Discounted avoided damages

- We calculate the discounted sum of avoided pollution damages in each scenario relative to the reference case
- The combination of high EV demand and a carbon price can result in lower benefits than carbon pricing alone

	(1)	(2)	(3)	(4)
	Carbon price in 2040			
	\$5.30/ton	\$30/ton	\$50/ton	\$70/ton
Electric Vehicles	2.70	2.70	2.70	2.70
Carbon Price	2.62	21.08	33.03	41.61
Electric Vehicles + Carbon Price	5.11	20.90	34.25	43.00
Benefit Adding EVs to Carbon Price	2.49	-0.18	1.22	1.39
Net Complementarity	-0.21	-2.88	-1.48	-1.31

Table: Discounted Avoided Pollution Damages to 2050

Notes: Units are billions of 2016 \$/year and all values are changes relative to the reference case. The discount rate is 3%.

Introduction

Conceptual Framework

Empirical Evidence

Dynamic Simulation

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Conclusions

- A cautionary tale about interacting policies
 - A dispatch + retirement effect can lead to a substitutability between carbon and EV policies
 - The welfare benefits of EV policies can be lower under a range of carbon prices
 - In historical data and a prospective dynamic simulation
- Some important context though:
 - Most likely in regions with lots of inframarginal coal generation
 - With a high-enough carbon price, coal is retired
 - The carbon price reduces emissions in all cases
- Similar interaction effects are likely in other sectors

Thank you!

Appendix: Coal is pushed to and beyond the margin in ERCOT

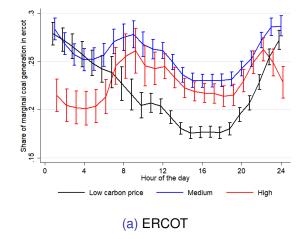
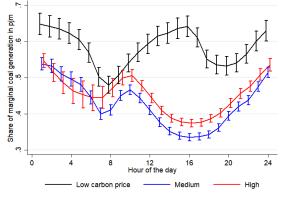



Figure: Marginal generation that is coal-fired generation in ERCOT.

Appendix: Coal is pushed beyond the margin in PJM

(a) PJM

Figure: Marginal generation that is coal-fired generation in PJM.