
IAEE 2021 1st Online Conference, June 9th, 2021

Preliminary Version Production costs uncertainties of SMR-concepts -A model-based Monte Carlo analysis

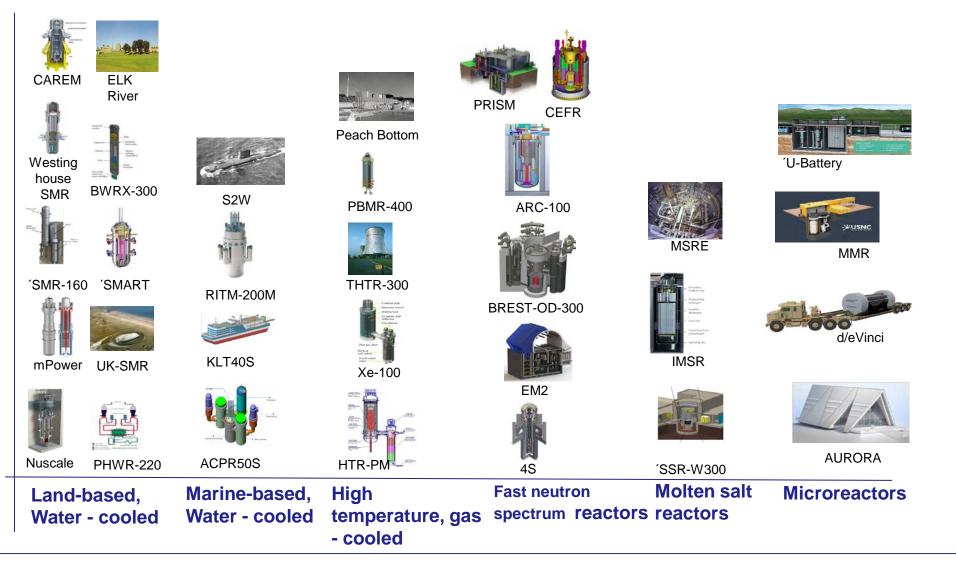
Björn Steigerwald¹ , Martin Slowik³ , Christian von Hirschhausen^{1,2} , Ben Wealer^{1,2} University of Technology, Berlin¹ German Institute of Economics, Berlin² University of Mannheim³

Agenda

٠

۲

2



- Definition & Theory
- Current advertised costs of selected SMR concepts

Motivation

Recently	Recently there is a surge of SMR- research and literature on nuclear power with low capacity: "SMR – concepts"
to consider	 Not a new phenomenon, in fact going back to the 1950s Re-naming by the US-Department of Energy DOE, Minister Steven Chu (2010) in an attempt to work towards "Generation IV" reactors SMR traditionally stands for "Small and Medium-Sized Reactors" (IAEA 1961; 1971) Nuclear power plants of large capacities (> 1,000 MW) are not competitive (Wealer et al. 2021), can reactors of small capacity become competitive?
Definition	"SMRs are reactors in which a single reactor has an electrical power output of less than 300 MWe (or a thermal power output of less than 1000 MWth). These can be both based on water-cooled or other (non-water cooled) reactor designs" (Pistner et.al. 2021, 24)

A selection of SMR – concepts from the current ARIS 2020 publication

Source: ARIS 2020

Available SMR - Concepts costs

Reaktor	Reactor Typ	Manufacturer costs [Total, m \$ 2020]	Capacity [Mwe]	Design Lifetime [years]
UK-SMR	PWR	2.310,660.000	443	60
BWRX-300	BWR	675,000.000	300	60
EM2	HTR/GFR	1.158,924.500	265	60
HTR-PM	HTR	578,760.000	210	40
IMSR(300)	MSR	790,581.851	195	56-60
PBMR-400	HTGR	255,750.000	165	40
SMR-160	PWR	1.010,000.000	160	80
SMART	PWR	428,000.000	107	60
ARC-100	SFR	505,000.000	100	60
Nuscale	PWR	266,882.000	77	60
RITM 200M	PWR	223,236.000	53	60
ACPR 50S	PWR	341,280.000	40	40
KLT-40S	PWR	473,600.000	35	40
SSR-W	MSFR	58,500.000	30	60
CAREM	PWR	695,625.000	30	40
CEFR	SFR	460,690.724	20	30
4S	SFR	25,000.000	10	60
e-Vinci	MR	20,200.000	3,5	40

Reference Nuclear Power Plants

Reactor	Тур	Referenz Kosten [\$/KWe]	Referenz Kosten [\$/MWe]	Referenz Leistung [MWe]	Totale Kosten [m USD 2020]
Vogtle <i>,</i> AP1000	PWR	11.550	11.550.000	1.117	12.901,350.000
Superphénix	SFR	28.413	28.412.800	1.250	35.516,000.000
Clinton - 1	BWR	8.758	8.758.079	950	8.320,175.240
Fort St.Vrain -1	HTGR	200.000	200.000.000	330	66.000,000.000

In General:

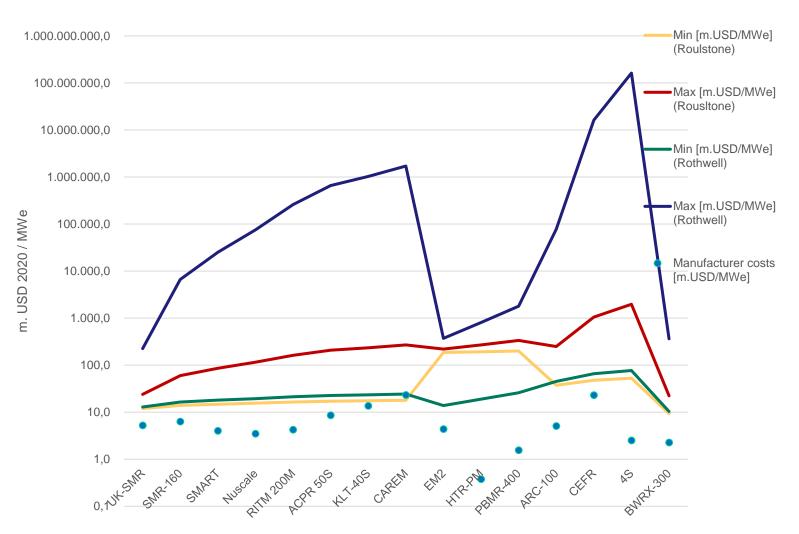
- Costs are not available for every reactor
- USD are adapted to USD 2020

Current theory regarding cost estimation for SMR concepts

	<u>Rothwell:</u>	$C_{s} = C_{L} * \left(\frac{P_{s}}{P_{L}}\right) * \alpha^{(lnP_{s} - lnP_{L})/ln2} (1 - x)$	1
Two main theories	Roulston:	$C_s = C_L * \left(\frac{P_s}{P_L}\right)^\beta (1-x)$	0,5 Roulston 0 0 0 0 0 0 0 0 0 0 0 0 0
	5 1	e costs, P_S , P_L denotes the power output and α , β scaling the learning factor	-0,5 Note that if $P_S < P_L$ and $\beta < 0$ then $C_S > C_L$
same	•	ntary computations: = $\alpha^{(\ln(\frac{P_S}{P_L})/ln2} = e^{\frac{ln\alpha}{ln2}*ln\frac{P_S}{P_L}} = (\frac{P_S}{P_L})^{\frac{ln\alpha}{ln2}}$	Consequence ?? For the theory of Rothwell, scaling actor below 0.5 will deliver costs taller than Cost - Reference
structure ??		Rothwell can be written as $C_S = C_L * (\frac{P_S}{P_L})^{1 + \frac{ln\alpha}{ln^2}}$. The same structure if we set $\beta^{Rothwell}(\alpha) = 1 + \frac{ln}{ln}$.	

Current Theory vs. Advertised manufacturing costs

Example – case, computation of NuScale costs in dependence of learn –effects and scaling factor


Formula in respect to Roulstone 2020:
$Cost_{SMR_k} = (Cost_{LR} * (\frac{Size_{SMR}}{Size_{LR}})^{\beta})_k * (1-x)^d$
$Cost_{NuScale} = 12.901.350.000 * \left(\frac{77 \ MWe}{1117 \ MWe}\right)^{0,6} * (1-0,1)^{1}$
$Cost_{NuScale} = 12.901.350.000 * 0,7653 * 0,9 \approx 3.048.571.904$
Formula in respect to Rothwell 2020: $Cost_{SMR} = Cost_{LR} * \left(\frac{Size_{SMR}}{Size_{LR}}\right) * (1 - x) * \alpha^{[(ln(Size_{SMR}) - ln(Size_{LR}))/ln(2)]}$
$Cost_{NuScale} = 12.901.350.000 * \left(\frac{77 \ MWe}{1117 \ MWe}\right) * (1 - 0, 1) * 0,6^{\left[\frac{\ln(77MWe) - \ln(1117MWe)}{\ln(2)}\right]}$
$Cost_{NuScale} = 12.901.350.000 * 0,0689 * 0,9 * 0,5^{[-3,8586]} \approx 5.504.943.292.249$

General assumptions for re-computation:

- A doubling d in production from 1
- A "best case" learn effect from 10% (Mignacca and Locatelli 2020)

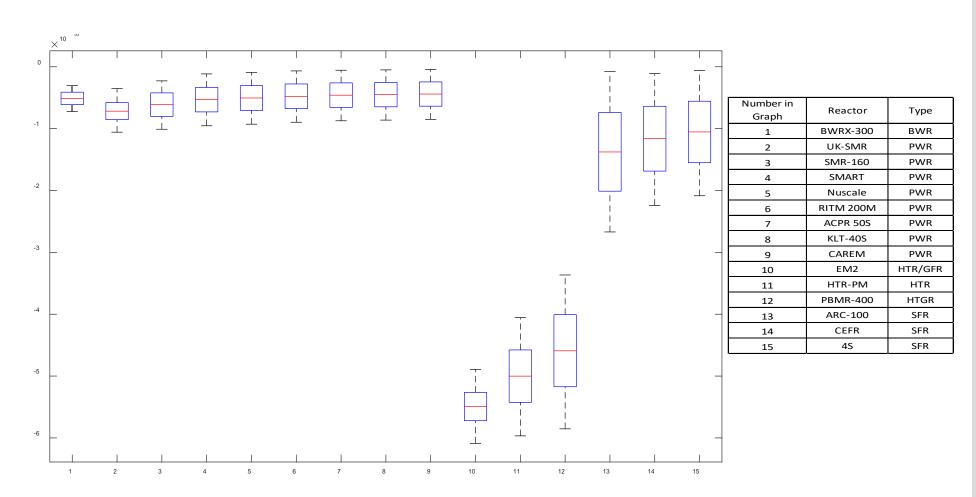
Variable	Description & Unit
C _{SMRk}	Cost estimation for an SMR – concept (=300MWe)</th
C_{LR}	Cost estimation for an NPP (>/= 300 MWe)
P_{SMR}	Capacity in MWe
P_{LR}	Capacity in MWe
β	Scaling factor
k	"Index for costs of SMR concept k"
x	Learn – Effect
d	"Doubles" of production

Advertised manufacturer costs vs. recalculated cost theory – do manufacturer underestimate ?

In General:

- Advertised manufacturing
 costs seems to be pretty
 underestimated compared
 with current theory
- Current finished projects of constructed SMR – concepts (KLT-40S, HTR-10, got underestimated first and finished far above first estimation

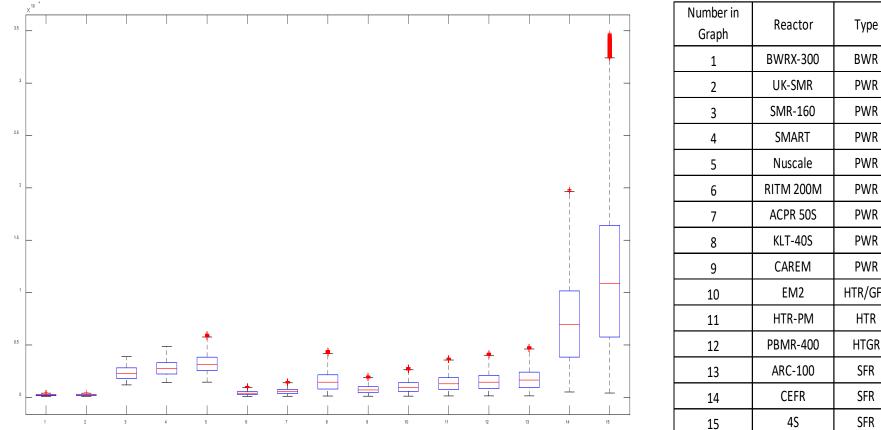
Source: Own calculation and drawing, with help of Pistner et.al. 2021


INVESTMENT DECISION

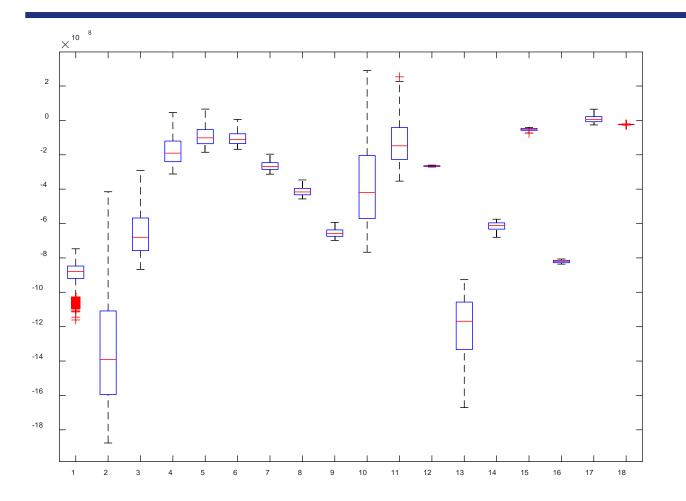
Investment decision with uncertainty

- Computation of NPV and LCOE through simulation of uncertain parameter with the help of Monte Carlo Simulation
- Sensitivity analysis in case of NPV calculation

Computation of NPV and LCOE through simulation of uncertain parameter with the help of Monte Carlo Simulation


Measurement to promote an investment decision	Net Present Value (NPV)	Leverage cost of electricity (LCOE)	
Definition	$NPV = \sum_{t=0}^{T} e_t * (1 + r_t)^{-t}$	$LCOE = \frac{\sum_{t=0}^{T} (TCC_t + 0 \& M_t + Fuel_t + Carbon_t) * (1 + r_t)^{-t}}{\sum_{t=0}^{T} Electricity * (1 + r_t)^{-t}}$	
Model adaptions (per time frame)			
	 Time : 7 Electricity: EEX wholesale electricity 	$T \stackrel{\text{\tiny def}}{=} T_{const.} + T_{operational}$ y price for 2020 in USD	
Uncertain Parameter	 Used common technique of Monte Carlo Simulation to simulate unified investment costs, WACC, load factor and wholesale electricity price due 1.000.000 simulations 		

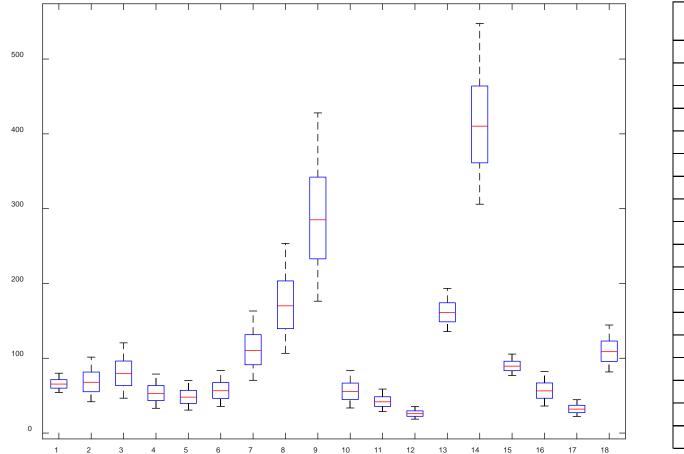
Findings:


- Reactor Technology drives NPV of SMR – concepts – Groups can be identified (BWR &PWR, HTR, SFR)
- Theory after Rothwell is strongly influenced by its scaling factors (a scaling factor below 0.5 delivers a drastic spread in investment interval)
- Scaling theory is highly hypothetical last cited sources are from 1978

LCOE calculation in respect to theory after Roulstone with uncertain parameter simulated

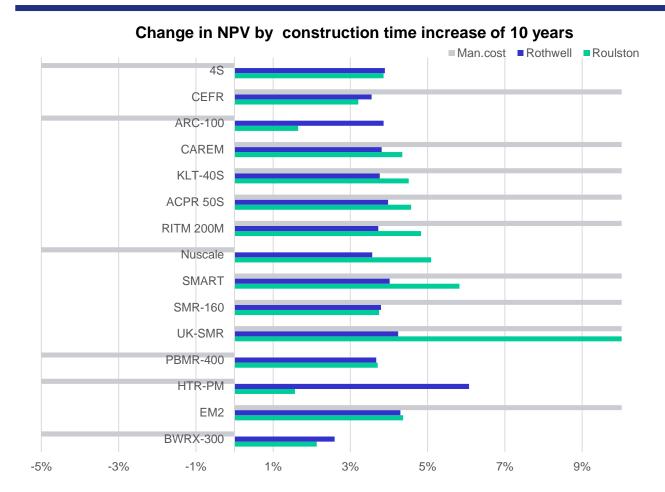
BWR PWR PWR PWR PWR PWR PWR PWR PWR HTR/GFR HTR HTGR SFR SFR SFR

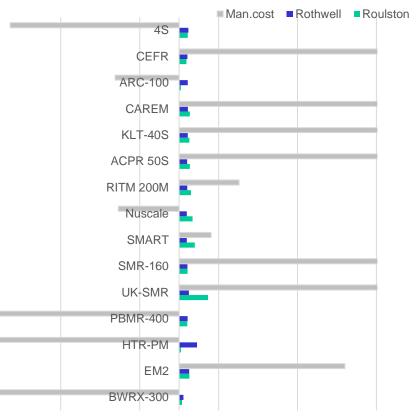
NPV calculation in respect to advertised manufacturing costs with uncertain parameter simulated



Number in Graph	Reactor	Туре
1	BWRX-300	BWR
2	UK-SMR	PWR
3	SMR-160	PWR
4	SMART	PWR
5	Nuscale	PWR
6	RITM 200M	PWR
7	ACPR 50S	PWR
8	KLT-40S	PWR
9	CAREM	PWR
10	EM2	HTR/GFR
11	HTR-PM	HTR
12	PBMR-400	HTGR
13	ARC-100	SFR
14	CEFR	SFR
15	4S	SFR
5	IMSR(300)	MSR
14	SSR-W	MSFR
18	e-Vinci	MR

Findings:


- NPV differences in reactor technologies seems to be higher then in theory
- None PWR & BWR SMR
 concepts seems to have an
 lower NPV with smaller
 capacity which can be
 explained through none linear
 effects
- In case of PWR reactors, NPV seems to have a linear correlation to the concept's capacity with exclusion of the SMR – concept of the UK-SMR, SMR- 160 and SMART


LCOE computation in respect to advertised manufacturing costs with uncertain parameter simulated

Number in Graph	Reactor	Туре
1	BWRX-300	BWR
2	UK-SMR	PWR
3	SMR-160	PWR
4	SMART	PWR
5	Nuscale	PWR
6	RITM 200M	PWR
7	ACPR 50S	PWR
8	KLT-40S	PWR
9	CAREM	PWR
10	EM2	HTR/GFR
11	HTR-PM	HTR
12	PBMR-400	HTGR
13	ARC-100	SFR
14	CEFR	SFR
15	4S	SFR
5	IMSR(300)	MSR
14	SSR-W	MSFR
18	e-Vinci	MR

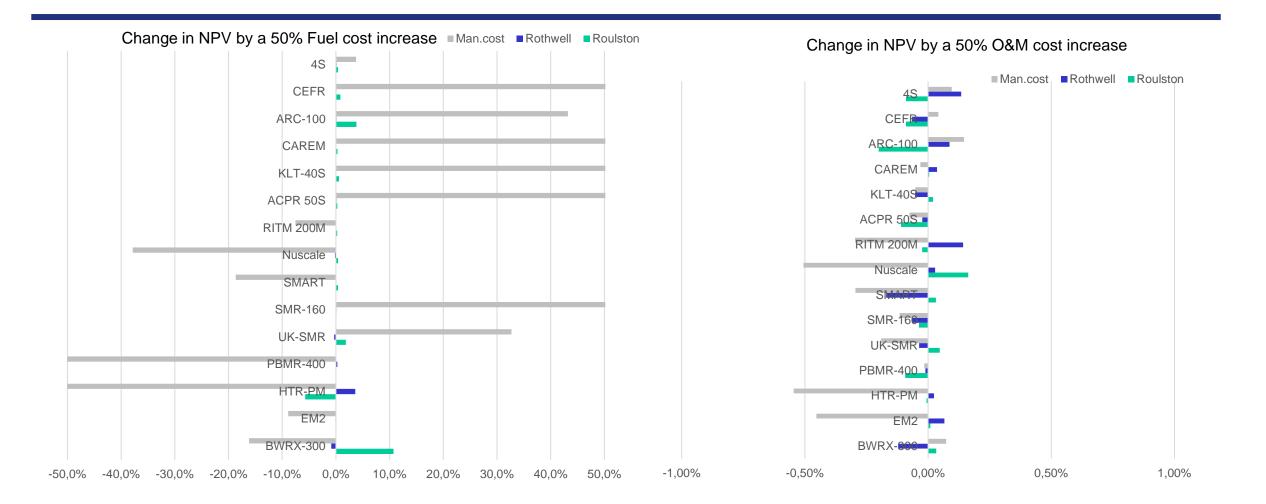
Sensitivity for parameter construction time and WACC

10%

-30%

-50%

-10%


Change in NPV by a 50% WACC increase

Source: Own calculation and drawing, with help of Pistner et.al. 2021

50%

30%

Sensitivity for

Results

In General we can conclude	 Production economics are not favourable to SMRs, given the small capacities and lack of mass production options Effects of mass production and learning unlikely to be attained, due to stringent safety evaluations (by country) and lack of demand SMRs might be pursued for specific research or military applications, but are no option for competitive, low-carbon electricity
In terms of an possible investment	 LCOE costs got underestimated by current SMR – concept manufacturers in their advertisements The Net Present value with respect to the German traded wholesale electricity price will be negative, which indicates a none competitiveness for SMR concepts

Literature [1/3]

Boarin, S., M. Mancini, M. Ricotti, and G. Locatelli. 2021. 'Economics and Financing of Small Modular Reactors (SMRs)'. In *Handbook of Small Modular Reactors*, 2nd ed., 241–78. Kidlington (UK) and Cambridge (USA): Elsevier.

Chu, Steven. 2010. 'America's New Nuclear Option: Small Modular Reactors Will Expand the Ways We Use Atomic Power'. *Wall Street Journal*, 23 March 2010. https://www.energy.gov/articles/secretary-chu-op-ed-small-modular-reactors-wall-street-journal.

Froese, Sarah, Nadja C. Kunz, and M.V. Ramana. 2020. 'Too Small to Be Viable? The Potential Market for Small Modular Reactors in Mining and Remote Communities in Canada'. *Energy Policy* 144 (September): 111587. https://doi.org/10.1016/j.enpol.2020.111587.

IAEA. 1961. 'Small and Medium Power Reactors - 1960'. Vienna, Austria: International Atomic Energy Agency.

. 1971. 'Small and Medium Power Reactors - 1970'. Vienna, Austria: International Atomic Energy Agency.

Kuznetsov, Vladimir, and Lokhov, Alexey. 2011. 'Current Status, Technical Feasability and Economics of Small Nuclear Reactors'. NEA Nuclear Development Division. https://www.oecd-nea.org/ndd/reports/2011/current-status-small-reactors.pdf.

Lloyd, Clara, Robbie Lyons, and Tony Roulstone. 2020. 'Expanding Nuclear's Contribution to Climate Change with SMRs'. *Nuclear Future*, November, 39.

Literature [2/3]

Mignacca, Benito, and Giorgio Locatelli. 2020. 'Economics and Finance of Small Modular Reactors: A Systematic Review and Research Agenda'. *Renewable and Sustainable Energy Reviews* 118 (February): 109519. https://doi.org/10.1016/j.rser.2019.109519.

OECD Nuclear Energy Agency, ed. 2000. *Reduction of Capital Costs of Nuclear Power Plants*. Nuclear Development. Paris: Nuclear Energy Agency, Organisation for Economic Co-operation and Development.

Pistner, Christoph, and Matthias Englert. 2017. 'Neue Reaktorkonzepte. Eine Analyse des aktuellen Forschungsstands'. Darmstadt: Öko - Institut e.V. https://www.oeko.de/fileadmin/oekodoc/Neue-Reaktorkonzepte.pdf.

Pistner, Christoph, Matthias Englert, Christian Küppers, Ben Wealer, Björn Steigerwald, Christian von Hirschhausen, and Richard Donderer. 2021. 'Sicherheitstechnische Analyse Und Risikobewertung Einer Anwendung von SMR-Konzepten (Small Modular Reactors)'. Wissenschaftliches Gutachten im Auftrag des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) urn:nbn:de:0221-2021030826028. Darmstadt: Öko-Institut e.V.

Ramana, M. V. 2021. 'Small Modular and Advanced Nuclear Reactors: A Reality Check'. *IEEE Access*, IEEE Access, 9: 42090–99. https://doi.org/10.1109/ACCESS.2021.3064948.

Ramana, M. V., and Zia Mian. 2014. 'One Size Doesn't Fit All: Social Priorities and Technical Conflicts for Small Modular Reactors'. *Energy Research & Social Science* 2 (June): 115–24. https://doi.org/10.1016/j.erss.2014.04.015.

Literature [3/3]

Rothwell, Geoffrey. 2016. Economics of Nuclear Power. London, UK: Routledge.

Wealer, Ben, Simon Bauer, Leonard Goeke, Christian von Hirschhausen, and Claudia Kemfert. 2020. 'Economics of Nuclear Power Plant Investment: Monte Carlo Simulations of Generation III/III+ Investment Projects'. *DIW Berlin Discussion Paper*, no. 1833.

Wealer, Ben, Simon Bauer, Christian von Hirschhausen, Claudia Kemfert, and Leonard Göke. 2021. 'Investing into Third Generation Nuclear Power Plants - Review of Recent Trends and Analysis of Future Investments Using Monte Carlo Simulation'. *Renewable and Sustainable Energy Reviews* 143: 110836.

Woite, Georg. 1978. 'Capital Investment Costs of Nuclear Power Plants'. Volume 20, Number 1. IAEA Bulletin. https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull20-1/20104781123.pdf.

Email: bs@wip-tu-berlin.de

Björn Steigerwald¹, Martin Slowik³, Christian von Hirschhausen^{1,2}, Ben Wealer^{1,2} University of Technology, Berlin¹ German Institute of Economics, Berlin² University of Mannheim³