

THE GLOBAL HYDROGEN MARKET 2050 A MODEL-BASED COMPARISON OF PATHWAYS AND POLICY CONSTRAINTS

Jefferson Riera, Lukas Barner, Franziska Holz Lennart Rathje, Robin Sogalla, Christian von Hirschhausen

Fachgebiet Wirtschafts- und Infrastruktur Politik (WIP)

Today ~95% of hydrogen production comes from fossil fuels...

through steam reforming (SMR) of natural gas and coal.

- Hydrogen is primarily produced and used on site by the industrial sector
- Purpose: ammonia production and oil refining

So far there is no significant hydrogen production from renewables.

International Trade of Hydrogen?

Asian market will likely be the largest consumer of hydrogen \rightarrow opens doors for exporting countries with low-cost electricity and with high-capacity factors.

Australia (south): significant renewable generation capacity and limited interconnection with the rest of the country.

• Exports to Japan, South Korea, China, and Singapore

Chile: one of the best solar resources in the world (Atacama Desert)

• low-cost, high-capacity renewables \rightarrow low-cost hydrogen production for Asia

Norway: Hydrogen can be produced by hydropower, offshore wind, and natural gas

Saudi Arabia: combination of complementary wind and solar PV to generate hydrogen, potentially transported as ammonia

GH2-MOD (current iteration)

- Static model of the year 2050
- Deterministic
- Ten regions
- Transport of hydrogen as liquid and gas
- Includes market power
- Models different player in the value chain

Hydrogen Economy: Value Chain and Actors

* Production via SMR or Electrolysis

Producer's (Electrolysis) Optimization Problem

$$\max_{SALES_E^E} \left(\pi_{n(e)}^E SALES_E^E - c_e^E SALES_e^E \right)$$
(1)

s.t. $SALES_e^E \le CAP_e^E$ (α_e^E) $SALES_e^E \le CAP_e^{EReg}$ (β_e^E) $SALES_e^E \ge 0$ (2) (3) (4)

Market Clearing

$$0 \leq SALES_e^E - PURCH_{t_e(e)n(e)}^{T_e \leftarrow E} - \sum_{l \in L_e(e)} PURCH_l^{L_e \leftarrow E} \quad \forall e \qquad (\pi_{n(e)}^E)$$
(5)

Producer's (Electrolysis) Optimization Problem

$$\max\left(\pi_{n(e)}^{E}SALES_{E}^{E} - c_{e}^{E}SALES_{e}^{E}\right)$$
(1)

s.t.
$$SALES_e^E \le CAP_e^E$$
 (α_e^E)
 $SALES_e^E \le CAP_e^{EReg}$ (β_e^E)
 $SALES_e^E \ge 0$
(2)
(3)
(4)

Market Clearing

$$0 \leq SALES_e^E - PURCH_{t_e(e)n(e)}^{T_e \leftarrow E} - \sum_{l \in L_e(e)} PURCH_l^{L_e \leftarrow E} \quad \forall e \qquad (\pi_{n(e)}^E)$$
(5)

Same type of optimization problem under constraints and market clearing conditions for all other players, including producer (SMR)

Producer's (Electrolysis) KKT

$$0 \leq -\pi_{n(e)}^{E} + c_{e}^{E} + \alpha_{e}^{E} + \beta_{e}^{E} \perp SALES_{e}^{E} \geq 0$$

$$0 \leq CAP_{e}^{E} - SALES_{e}^{E} \perp \alpha_{e}^{E} \geq 0$$

$$0 \leq CAP_{e}^{EReg} - SALES_{e}^{E} \perp \beta_{e}^{E} \geq 0$$
(8)

Market Clearing

$$0 \leq SALES_e^E - PURCH_{t_e(e)n(e)}^{T_e \leftarrow E} - \sum_{l \in L_e(e)} PURCH_l^{L_e \leftarrow E} \perp \pi_{n(e)}^E \geq 0 \qquad \forall e \qquad (9)$$

Hydrogen Production Capacity (2050)

Source: Löffler et al. 2017; Burandt et al. 2018

Production Costs

Source: Heuser et al. (2019); Brändle et al. (2020); IEA 2019

Other Data Inputs

- Liquefaction / Regasification capacities and costs
- Transportation costs (shipping vessels and pipelines)
- Loss rates

Source: Heuser et al. (2019); Brändle et al. (2020); IEA 2019

Perfect Competition

Hydrogen Demand – Perfect Competition

Nearly half of Asia's hydrogen demand is met by China

Half of European demand is met by the Former Soviet Union and Africa

Hydrogen Production – Perfect Competition

Rest of Asia and Europe are sole importers

Africa, China and the Former Soviet Union are exporters

Electrolysis: 404 Mt/a SMR: 230 Mt/a

Market Power – Flows

Market Power

Hydrogen Demand – Market Power

Global Hydrogen Demand: 520 Mt/a

Europe Africa North America South America Oceania China India Middle East FSU Asia

Largest hydrogen demand:

- 1. China
- 2. Africa
- 3. Rest of Asia

Makes up 50% of global demand

Hydrogen Demand – Market Power

• Total demand cut by ~ 20%

- India's demand cut in half
- African hydrogen penetrates new markets
- Europe relies mostly on imports to meet demand

Market Power – Flows

Hydrogen Production – Market Power

China's production accounts for a fourth of global production

Strategic trading, countries import and export to take advantage of external hydrogen prices.

Hydrogen Prices

Future Work

Model Expansion

- Multi-period framework
- Addition of storage operators
- Addition of ammonia as a hydrogen carrier
 - Hydrogenator and Dehydrogenator players
- Spatial disaggregation of regions

Hydrogen Economy: Value Chain and Actors

