#### ELECTRICITY TARIFF IMPLICATIONS OF INCREASING ADOPTION OF BEHIND THE METER TECHNOLOGIES IN AN AFRICAN CONTEXT

#### Mohamed Hendam <sup>a,b,c</sup>, Tim Schittekatte <sup>b</sup>, Mohamed Abdel-Rahman <sup>c</sup>, Mohamed Zakaria Kamh <sup>c</sup>

a: Egyptian Electric Utility & Consumer Protection Regulatory Agency, 1st Maher Abaza St., Nasr City, Cairo, Egypt
b: Florence School of Regulation, European University Institute, Villa Schifanoia - Il Casale, Via Boccaccio 121, I-50133, Florence, Italy
c: Faculty of Engineering, Ain Shams University, 1 Elsarayat St., Abbasseya, Cairo, Egypt

1<sup>st</sup> IAEE Online Conference 7 – 9 June 2021

### Introduction

- Significant BTM namely small scale PV adoption was driven by **subsidy schemes** Inderberg et al. (2018).
- Currently, BTM investments can be profitable depending merely on retail rates and solar irradiation (Candas et al., 2019; Young et al., 2019).
- Despite being a societal & governmental objective, we need to be careful not to jeopardise regulatory objectives.
- BTM challenges cost recovery of utility regulated investment, since reduced revenues are not proportional to reduced costs.
- Africa is not an exception; we can see the increasing • adoption of solar PV by grid-connected households from behind the meter (BTM).

#### Are Australian solar households getting ripped off?

By Giles Parkinson on 26 March 2014

Households in Australia adding sola question to ask themselves: Are the solar power that they export back t

Why is it, they might wonder, that I state-sponsored subsidies) for th exports? In some areas, such as households at all.

#### **NV Energy CEO: Solar Has** Gotten a 'Free Ride' on the (



suggest it is not a lot."

y Herman K. Trabish dust 19, 2013

#### With Rooftop Solar Booming, California **Utilities Want to Charge More**





#### Market Structure

- What are the regulatory implications of the adoption of BTM technologies, under Single Buyer Model?
- Can we mitigate those implications through a better design of retail rate?

![](_page_2_Figure_3.jpeg)

Sources: (Eberhard et al., 2019) (EE Law, 2015) (Directive EU 944, 2019)

#### Previous Work: Implications of BTM Technologies

| Publication               | Journal                    | Structure                 | Focus                                           | Customer Decision   | Approach                    | Case studies                                                                            |
|---------------------------|----------------------------|---------------------------|-------------------------------------------------|---------------------|-----------------------------|-----------------------------------------------------------------------------------------|
| Eid et.al (2014)          | Energy Policy              | EU/ Liberalized           | NM Cost Recovery +<br>Cross subsidy             | Exogenous           | Financial Model +<br>Excel  | Volumetric<br>/Capacity                                                                 |
|                           |                            |                           |                                                 |                     |                             | /Fixed <b>DSO</b> charges                                                               |
| Abdelmotteleb et al       | Applied Energy             | EU/ Liberalized           | DSO Cost Recovery +                             | Endogenous          | Simulation +                | Volumetric / PCNC + Fixed                                                               |
| (2017)                    |                            |                           | System Cost                                     |                     | Optimization +              |                                                                                         |
|                           |                            |                           |                                                 |                     | Matlab                      |                                                                                         |
| Schittekatte et.al (2018) | Energy Economics           | EU/ Liberalized           | Regulatory Proxies:                             | Endogenous          | Game theoretic +            | NM (bi-d) Volumetric                                                                    |
|                           |                            |                           | Efficiency & Fairness                           |                     | GAMS                        | Or Capacity                                                                             |
| Satchwell et al. (2015a)  | Energy Policy              | US / VIU/ Single<br>buyer | Average rates &<br>Shareholder earnings<br>/ NM | Exogenous           | Proforma Financial<br>Model | ROE + Avg. Rates                                                                        |
| Satchwell et al. (2015b)  | Energy Policy              | US / VIU/ Single<br>buyer | Average rates &<br>Shareholder earnings<br>/ NM | Exogenous           | Proforma Financial<br>Model | Recommendations on revenue<br>loss: (U. Incentives, rate<br>readjustment, ownership)    |
| Sergici et al. (2019)     | The Electricity<br>Journal | US / VIU/ Single<br>buyer | Cross subsidy / NM                              | Actual - 16 utility | Cost of service<br>Model    | Diff Utility Circumstances: PV<br>penetration levels + and locations<br>+ Utility sizes |

### Methodology

#### • Modelling:

- **Regulatory Cost Recovery Constraint** (Iteratively maintained in MATLAB )
- Prosumer: Optimisation of Annual Energy Costs (in GAMS)
- BTM Cost Scenarios: High & Low
- Rate Designs: IBT & DFC
- Regulatory Metrics:
  - Equity (Fairness): the degree that certain consumer categories namely low-income consumers are protected against negative redistributional impact of a new rate design (Battle et al, 2020).
  - **Economic Efficiency**: the degree that economic signals such as tariffs and prices align the interest of private consumers with that of the system (Schweppe, 1988).
  - **Cost Recovery of the single Buyer**: the recovered percentage of the single buyer investment.
  - **Cost Recovery of the DISCO**: the recovered percentage of the DISCO investment.

![](_page_4_Figure_11.jpeg)

### Case Study

| Indicator             | Unit              | Consumer Segment                |                                                      |                             |  |
|-----------------------|-------------------|---------------------------------|------------------------------------------------------|-----------------------------|--|
|                       |                   | "S1" Lowest-<br>Consumptio<br>n | "S2" Medium-<br>Consumption                          | "S3" Higher-<br>Consumption |  |
| Consumption Span      | (KWh/Month<br>)   | 0-100                           | 101 - 650                                            | Above 650                   |  |
| Consumer Share        | (%)               | 26.4                            | 71.17                                                | 2.43                        |  |
| Number of Consumers   | Metering<br>point | 4603                            | 12409                                                | 424                         |  |
| Representative        | KWh/Month         | 50                              | 550                                                  | 1050                        |  |
| consumption           | KWh/Year          | 600                             | 6600                                                 | 12600                       |  |
| Volumetric Charges    | (EGP/KwH)         | 0.71                            | ( 0-200): 0.97<br>(201-350): 1.23<br>(351-550): 1.36 | 1.45                        |  |
| Volumetric Obligation | (EGP/Month)       | 35.5                            | 650.5                                                | 1522.5                      |  |
| Fixed Charge          | (EGP/Month)       | 1                               | 15                                                   | 40                          |  |
| Monthly Bill          | (EGP/Month)       | 36.5                            | 665.5                                                | 1562.5                      |  |

| Item                                          | Value               |
|-----------------------------------------------|---------------------|
| Transfer Price - Volumetric component @ 66 kV | 1.1 EGP/KWh         |
| Transfer Price – Capacity component @ 66 kV   | 50 EGP/KW per Month |
| Weighted Average System Generation Cost       | 0.714 EGP/KWh       |
| Weighted Average Retail Rate                  | 1.213 EGP/KWh       |

Hourly PV Yield (KWH)

![](_page_5_Figure_4.jpeg)

Hourly Load (KWH)

![](_page_5_Figure_6.jpeg)

Sources: (EgyptERA website, 2020; EEHC, 2020)

### Results 1 – Status Quo IBT

- Under historical assumptions about consumers' inelasticity, IBT is maintaining regulatory confidence.
- Under a low cost BTM scenario:
  - positive efficiency outcome with a reduction of 6.2% in total system costs
  - IBT rate design will fail in maintaining cost recovery of the single buyer
  - revisiting the transfer price design

| Parameter / Variable / Re              | High Cost               | Low Cost |      |
|----------------------------------------|-------------------------|----------|------|
| Volumetric Rate Component<br>(EGP/kWh) | High – Consumption      | 1.48     | 1.52 |
|                                        | Medium -<br>Consumption | 1.20     | 1.24 |
|                                        | Low – Consumption       | 0.72     | 0.74 |
| Fixed-Rate Component<br>(EGP/Month)    | High – Consumption      | 40       | 40   |
|                                        | Medium -<br>consumption | 15       | 15   |
|                                        | Low - Consumption       | 1        | 1    |
| Efficiency Concerns (%)                | 3.0%                    | -6.2%    |      |
| Equity Concerns (%)                    | 1.8%                    | 4.6%     |      |
| Cost Recovery Concerns of DISCO        | 0%                      | 0%       |      |
| Cost Recovery Concerns of Single       | 4.9%                    | 23.9%    |      |

## Results 2 – Revisiting Transfer Prices

#### <u>Adjustments:</u>

- Volumetric component of the transfer price is the marginal cost while remaining sunk cost as a fixed charge
- Consumers remain seeing the IBT end-user charge

**Results:** 

- Increased equity concerns
- Load defection of both segments high and Medium consumption

| Parameter / Variable / Re          | Low Cost             |       |
|------------------------------------|----------------------|-------|
| Volumetric Rate Component          | High-consumption     | 1.71  |
| (EGP/kWh)                          | Medium-consumption   | 1.40  |
|                                    | Low-consumption      | 0.84  |
| Fixed-Rate Component               | High-consumption     | 40    |
| (EGP/Month)                        | Medium-consumption   | 15    |
|                                    | Low-consumption      | 1     |
| Transfer Price Components          | Volumetric (EGP/kWh) | 0.714 |
|                                    | Fixed (M EGP/Month)  | 3.473 |
| Efficiency Concerns (%)            | -6.2%                |       |
| Equity Concerns (%)                | 18.1%                |       |
| Cost Recovery Concerns of DISCO (  | 0%                   |       |
| Cost Recovery Concerns of Single B | 0%                   |       |

### Results 2 – Revisiting Transfer Prices

- A regulatory trilemma arises
- The sandwiched DISCOs.
  - Given a recorded financial deficit of more than 100% in the unbundled model
  - Additional supply obligations compared to the unbundled DSOs
  - An accelerated death spiral since highest consumer class is contributing to consumers in the lowest consumer class.
  - Analogy to the situation in California 2000-1 crisis
- The only way out is to move away from fully volumetric end-user charges

![](_page_8_Figure_8.jpeg)

### Results 3 – Differentiated Fixed Charges

#### Adjustments:

- Economic theory suggests reflecting only marginal cost in a volumetric format
- Fixed charge differentiated based on historical cost drivers

#### Results:

- Overall, the DFC methodology shows robustness in achieving cost recovery, unlike IBT methodology.
- Such regulated system of prices will allow BTM growth efficiently with the least regulatory concerns & interventions.

#### **Design Considerations:**

- Based on unchangeable historical load profiles
- Proxy is done once
- Avoid grid defection with Exit fees

| Parameter / Variable / Re              | High Cost            | Low Cost |       |
|----------------------------------------|----------------------|----------|-------|
| Volumetric Rate Component<br>(EGP/kWh) | High-consumption     | 0.714    | 0.714 |
|                                        | Medium-consumption   | 0.714    | 0.714 |
|                                        | Low-consumption      | 0.714    | 0.714 |
| Fixed-Rate Component<br>(EGP/Month)    | High-consumption     | 812.8    | 812.8 |
|                                        | Medium-consumption   | 272.8    | 272.8 |
|                                        | Low-consumption      | 0.8      | 0.8   |
| Transfer Price Components              | Volumetric (EGP/kWh) | 0.714    |       |
|                                        | Fixed (M EGP/Month)  | 3.473    |       |
| Efficiency Concerns (%)                |                      | 0%       | -6.2% |
| Equity Concerns (%)                    | 0%                   | 0%       |       |
| Cost Recovery Concerns of DISCO (%)    | 0%                   | 0%       |       |
| Cost Recovery Concerns of Single Buy   | 0%                   | 0%       |       |

### Regulatory Takeaways!

- Under a low cost BTM scenario, the IBT rate design cannot maintain cost recovery of regulated entities specially that of the sandwiched DISCO.
- It is not just about rate design. To maintain cost recovery of the SB under low cost BTM scenario there is a need to reconsider the **design of the transfer price**.
- BTM adoption is an additional argument for implementing of short term markets in order to allow for a better signals and the recuperation of the sunk generation costs
- The DFC methodology can achieve equity, efficiency and cost recovery, provided that:
  - Backward cost causation: non-distortive allocation; done once and left for 10 or 20 years
  - Exit Fees
- Implementation:
  - When: Better to start moving today to be ready tomorrow!
  - How: Gradually move towards DFC design to be ready at the time when BTM knocks on the door.

# Thank You!

For further inquiries:

mohamed.Hendam@eui.eu

## Bibliography

- <u>A. Eberhard, G. Dyson, O. Alao and C. Godinho, "Revisiting Reforms in the Power Sector in Africa", 2019, The African Development</u> <u>Bank and Association of Power Utilities of Africa.</u>
- <u>C. Eid, J. Reneses, G. Pablo, F. Marína and R. Hakvoort, "The economic effect of electricity net-metering with solar PV:</u> <u>consequences for network cost recovery, cross subsidies and policy objectives", 2014, Energy Policy.</u>
- Egyptian Electricity Holding Company (EEHC), "Annual Report 2018-2019", 2020, EEHC. Retrieved: http://www.moee.gov.eg/english\_new/report.aspx
- Egyptian Electric Utility and Consumer Protection Regulatory Authority (EgyptERA), "Tariff Plan", 2020, EgyptERA. Retrieved: http://egyptera.org/ar/SidePages/img/works/pdf/SitePDF/law2015.pdf
- Egyptian Electric Utility and Consumer Protection Regulatory Authority (EgyptERA), "Electricity Law". 2015. Official Journal of the Arab Republic of Egypt. Retrieved: http://egyptera.org/ar/SidePages/img/works/pdf/SitePDF/law2015.pdf
- <u>European Parliament & Council of the European Union, "Directive (EU) 2019/944", 2019, Official Journal of the European Union.</u> <u>Retrieved: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0944</u>
- <u>F. Sioshansi, "The Giant Headache That Is Net Energy Metering", 2013, Electricity Currents, Vol. 26, Issue 6.</u>
- <u>I. Abdelmotteleb, T. Gómez, J. Ávila, J. Reneses</u>, "Designing efficient distribution network charges in the context of active customers", 2017, Applied Energy.
- International Energy Agency (IEA), "Net metering and PV self-consumption in emerging countries", 2018, The International Energy Agency.
- I. Pérez-Arriaga, "Regulation of the Power Sector", 2013, Springer.

## Bibliography

- Mediterranean Energy Regulators (MEDREG), "Study to evaluate net metering systems in Mediterranean Countries", 2015, MEDREG.
- <u>M. Kleina, A. Ziadea and L. de Vries, "Aligning prosumers with the electricity wholesale market The impact of time-varying price signals and fixed network charges on solar self consumption", 2019, Energy Policy.</u>
- <u>R. Cossent, L. Olmos, T. Gómez, C. Mateo and P. Frías, "Mitigating the Impact of Distributed Generation on Distribution Network</u> <u>Costs through Advanced Response Options", 2010, the 7th International Conference on the European Energy Market.</u>
- <u>S. Candas, K. Siala, T. Hamacher, "Sociodynamic modeling of small-scale PV adoption and insights on future expansion without feed-in tariffs", 2019, Energy Policy.</u>
- <u>S. Ruester, S. Schwenen, C. Batlle and I. Pérez-Arriaga, "From Distribution Networks to Smart Distribution Systems: Rethinking the Regulation of European Electricity DSOs", 2014, Utilities Policy.</u>
- S. Sergic, Y. Yang, M. Castaner and A. Faruqui, "Quantifying net energy metering subsidies", 2019, the Electricity Journal.
- <u>S. Young, A. Bruce, I. MacGill, "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs", 2019, Energy Policy.</u>
- <u>T. Inderberg, K. Tews, B. Turner, "Is there a Prosumer Pathway? Exploring household solar energy development in Germany, Norway, and the United Kingdom", 2018, Energy Research & Social Science.</u>
- <u>T. Schittekatte, I. Momber and L. Meeus, "Future-proof tariff design: recovering sunk grid costs in a world where consumers are pushing back"</u>, 2018, Energy Economics.
- <u>T. Schittekatte and L. Meeus "Introduction to network tariffs and network codes for consumers, prosumers and energy communities"</u>, 2018, Florence School of Regulation (FSR).