

Wirtschaftswissenschaftliche Fakultät

WWZ

Energy storage in Switzerland: A household model approach linking heat and electricity

Héctor Ramírez, Arthur Rinaldi, Benjamin Schroeteler, Hannes Weigt

1st IEAA Online Conference 08.06.2021

Relevance

Source: (BFE, 2020)

Relevance

Relevance

- Energy Perspectives 2050+
 - 34 TWh generation from PV systems (curr. 2 TWh)
 - Future investments in electric battery systems
 - 1,5 million installed heat pumps (curr. 0,3 million)
 - Well insulated buildings with low heating demand

Research gap

- There is a research gap in combining:
 - Sector coupling between electric and heating storage models
 - Technical and regulatory drivers for energy storage systems
- This research will consider multiple technology options and will simulate different tariff schemes and support policies in a dynamic cost-based scenario decision model

- What is the role of energy storage technologies in contributing to a greater deployment of renewable energy technologies and a more efficient and effective use of energy in the context of the Swiss Energy Transition?
- How do energy storage technology deployment based on individual actors' decisions compare to the techno-economic / environmental optimal?

SwissStore Project

Investment model's structure

A. Archetype description

- Building archetype definition
- Geographical location (COP, solar generation data)
- Energy demand profiles

Python

B. Technology description

- Technical and operational data of new technologies
- Costs (CAPEX, OPEX, replacement)
- Archetype compatibility

Python

C. HH electricity optimization model

- Minimization of the system's energy costs for different technology configurations

GAMS

D. Model integration

- Scenario definition and comparison
- Decision making process

GAMS & Python

Model's setting

Seasonal Thermal Energy Storage (STES)

Parameter	Level 1	Level 2	Level 3
Temperature	35 °C	60 °C	90 °C
Efficiency	COP30	COP60	1
Volume	Small	Medium	Large
Charge / Discharge	Independent	Independent	Independent

Daramator	Scenario		
Farameter	No FiT	Low FiT	High FiT
Tariff (CHF / kWh)	0,35	0,35	0,35
Feed-in Tariff (CHF / kWh)	0	0,01	0,3
STES Relative capacity (%)	32%	32%	32%
PV Relative Capacity (%)	100%	100%	100%

12

1st IAEE Online Conference

- The operation of the PV system and STES is extremely sensitive to the tariff structure and installed PV capacity
- Without a FiT scheme, the STES burns energy during summer
- In the presence of a FiT, the STES is charged only briefly before the heating season starts
- If the **FiT is high enough**, the system will **feed into the grid** even during **winter**
- For the selected STES, energy level 3 is no longer used when there is a FiT

Scenario development

Next steps

- Finalize the scenario definition for both the Policy and the Drivers dimensions
- Integrate the investment and social planner models
- Run the integrated model for the full data set and scenarios and analize the results

Thank you for your attention!