The economic consequences of putting a price on carbon

IAEE Online Conference

Diego R. Känzig

June, 2021

Motivation

The looming climate crisis

- The looming climate crisis is one of the greatest challenges of our time
- On the current path of emissions, temperature to increase by 3-5°C by 2100
 ⇒ devastating effects on the environment, human health and the economy
- Pigou: internalize costs of polluting by putting a price on emissions
 - Difficult to implement in a global world with many stakeholders
 - More progress at the national level, but:
 - Little known about the effects of carbon pricing on emissions and the economy in practice

- New evidence from the European Emissions Trading Scheme (ETS), the largest carbon market in the world
- Exploit **institutional features** of the EU ETS and **high-frequency data** to estimate the dynamic causal effects of **carbon pricing**
 - Cap-and-trade system: Market price for carbon, liquid futures markets
 - Regulations in the market have **changed** considerably over time
 - Isolate exogenous variation in carbon price by measuring price change in tight window around policy events
 - Use as instrument to estimate dynamic causal effects of a carbon policy shock

- · Carbon policy has significant effects on emissions and the economy
- A shock tightening the carbon pricing regime leads to
 - a significant increase in energy prices and a persistent fall in emissions
 - not without cost: economic activity falls, consumer prices increase
 - costs not borne equally across society: poor lower their consumption significantly, rich barely affected

Related literature

- Carbon pricing and emissions: Lin and Li (2011); Martin, De Preux, and Wagner (2014); Andersson (2019); Pretis (2019)
- **Carbon pricing and economic activity**: Metcalf (2019); Bernard, Kichian, and Islam (2018); Metcalf and Stock (2020*a*,*b*)
- Carbon pricing and inequality: Pizer and Sexton (2019); Ohlendorf et al. (2021)
- Macroeconomic effects of tax changes: Blanchard and Perotti (2002); Romer and Romer (2010); Mertens and Ravn (2013); Cloyne (2013)
- **High-frequency identification**: Kuttner (2001); Gürkaynak, Sack, and Swanson (2005); Gertler and Karadi (2015); Nakamura and Steinsson (2018); Känzig (2021)
- Event studies on regulatory news in the ETS: Mansanet-Bataller and Pardo (2009); Fan et al. (2017); Bushnell, Chong, and Mansur (2013)

Identification

European carbon market

- Established in 2005, covers around 40% of EU GHG emissions
- Cap on total emissions covered by the system, reduced each year
- Emission allowances (EUA) allocated within the cap
 - free allocation
 - auctions
 - international credits
- Companies must surrender sufficient EUAs to cover their yearly emissions
 - enforced with heavy fines
- Allowances are traded on secondary markets (spot and futures markets)

- Establishment of EU ETS followed learning-by-doing process
- Three main phases, rules updated continuously
 - address market issues
 - expand system
 - improve efficiency
- Lots of regulatory events

Carbon price

Figure 1: EUA price

- Collected comprehensive list of regulatory update events
 - Decisions of European Commission
 - Votes of European Parliament
 - Judgments of European courts
- Of interest in this paper: regulatory news on the supply of allowances
 - National allocation plans
 - Auctions: timing and quantities
 - Use of international credits
- Identified 113 relevant events from 2005-2018

Table 1: Regulatory update events (extract)

	Date	Event description	Туре
54	30/11/2012	Commission rules on temporary free allowances for power plants in Hungary	Free alloc.
55	25/01/2013	Update on free allocation of allowances in 2013	Free alloc.
56	28/02/2013	Free allocation of 2013 aviation allowances postponed	Free alloc.
57	25/03/2013	Auctions of aviation allowances not to resume before June	Auction
58	16/04/2013	The European Parliament voted against the Commission's back-loading proposal	Auction
59	05/06/2013	Commission submits proposal for international credit entitlements for 2013 to 2020	Intl. credits
60	03/07/2013	The European Parliament voted for the carbon market back-loading proposal	Auction
61	10/07/2013	Member states approve addition of sectors to the carbon leakage list for 2014	Free alloc.
62	30/07/2013	Update on industrial free allocation for phase III	Free alloc.
63	05/09/2013	Commission finalized decision on industrial free allocation for phase three	Free alloc.
64	26/09/2013	Update on number of aviation allowances to be auctioned in 2012	Auction

High-frequency identification

• Idea: Identify carbon policy surprises from changes in EUA futures price in tight window around regulatory event

$$CPSurprise_{t,d} = F_{t,d} - F_{t,d-1},$$

where $F_{t,d}$ is log settlement price of the EUA front contract on event day d in month t

• Aggregate surprises to monthly series

$$CPSurprise_{t} = \begin{cases} CPSurprise_{t,d} & \text{if one event} \\ \sum_{i} CPSurprise_{t,d_{i}} & \text{if multiple events} \\ 0 & \text{if no event} \end{cases}$$

Figure 2: The carbon policy surprise series

- Narrative account:
- Autocorrelation:
- Forecastability:
- Orthogonality:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation:
- Forecastability:
- Orthogonality:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability:
- Orthogonality:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: \checkmark Uncorrelated with measures of other structural shocks $_{\rm (e.g. \ oil,}$

uncertainty, or fiscal shocks)

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: \checkmark Uncorrelated with measures of other structural shocks $_{\rm (e.g. \ oil,}$

uncertainty, or fiscal shocks)

- **Carbon policy surprise series** has good properties but is only imperfect shock measure
 - \Rightarrow Use it as an $\ensuremath{\mathsf{instrument}}$ to estimate dynamic causal effects on emissions and activity
- I use two approaches
 - External instrument approach: efficient, assumes invertibility
 - Internal instrument approach: robust to non-invertibility
- For estimation I rely on VAR techniques given the short sample

- 8 variable system:
 - Carbon block: HICP energy, total GHG emissions
 - **Macro block**: headline HICP, industrial production, unemployment rate, policy rate, stock market index, REER
- 6 lags as controls
- Estimation sample: 1999M1-2018M12

▶ Data

Results

- Weak instrument test by Montiel Olea and Pflueger (2013)
- Heteroskedastcitity-robust F-statistic: 20.95
- Larger than critical value of 15.06 (assuming worst case bias of 20% with 5% size)
- No evidence for weak instrument problems

The aggregate effects of carbon pricing

Panel A: External instrument approach

First stage regression: F-statistic: 20.95, $R^2 :$ 3.65%

The aggregate effects of carbon pricing

Restrictive carbon policy shock leads to

- strong, immediate increase in energy prices
- significant and persistent fall in emissions

This has **consequences** for the **economy**:

- Consumer prices increase
- Industrial production falls
- Unemployment rate rises
- · Stock prices fall initially but then reverse
- REER depreciates

 \Rightarrow Trade-off between reducing emissions and economic activity

Historical importance

Figure 3: Historical decomposition of emissions growth

- Carbon policy shocks have contributed meaningfully to historical variations in energy prices, emissions and macro variables
- But: they did **not** account for the fall in emissions following the global financial crisis
 - supports the validity of the identified shock

► More

Propagation channels

- Energy prices play an important role in the transmission
- Significant pass-through of carbon to energy prices

Figure 4: Carbon and energy prices

- **Higher energy prices** can have significant effects on the economy via direct and indirect channels
- Estimate effects on GDP components using local projections

$$y_{i,t+h} = \beta_0^i + \psi_h^i CPShock_t + \beta_{h,1}^i y_{i,t-1} + \ldots + \beta_{h,p}^i y_{i,t-p} + \xi_{i,t,h}$$

The transmission to the macroeconomy

Figure 5: Effect on GDP and components

- Fall in GDP similar to industrial production
- Looking at components, fall seems to be driven by lower consumption and investment
 - magnitudes much larger than can be accounted for by direct effect on discretionary income
 - indirect effects seem to be important

Having characterized the aggregate effects, look into **heterogeneous effects** of carbon pricing on **households**

- Sharpen understanding of transmission channels at work
- Characterize redistributive effects

Problem: Household-level micro data not available at the EU level for long enough and regular sample

- Focus on **UK** where high-quality micro data on **income** and **expenditure** is available
- Check external validity using data for Denmark and Spain.

Living costs and food survey

- LCFS is the major UK survey on household spending
 - provides detailed information on **expenditure**, **income**, and household **characteristics**
 - fielded every year but interview date allows to construct quarterly measures
- I compile a repeated cross-section spanning the period 1999 to 2018
 - each wave contains around 6,000 households, generating over 120,000 observations in total
- To estimate effects, I use a grouping estimator using normal disposable income as the grouping variable:
 - Low-income: Bottom 25%
 - Middle-income: Middle 50%
 - High-income: Top 25%

Table 2: Descriptive statistics on households in the LCFS

	Overall			
		Low-income	Middle-income	High-income
Income and expenditure				
Normal disposable income	236.3	112.6	236.3	466.6
Total expenditure (excl. housing)	157.3	91.6	155.4	269.6
Energy share	7.2	9.4	7.1	5.1
Non-durables (excl. energy) share	49.6	55.0	49.7	44.1
Services share	31.9	26.7	31.9	37.2
Durables share	11.3	8.9	11.3	13.6
Housing	32.0	18.8	31.1	58.0
Household characteristics				
Age	51	46	54	49
Education (share with post-comp.)	33.5	25.0	29.1	51.0
Housing tenure				
Social renters	20.9	47.1	17.4	3.7
Mortgagors	42.6	25.5	41.6	60.4
Outright owners	36.6	27.4	41.0	36.0

Heterogeneity by income group

- Low-income households lower their consumption significantly and persistently
- Response of high-income housheolds barely significant
 - Low-income households are more exposed because of higher energy share
 - But also experience stronger fall in their income

- Fiscal policies **targeted** to the **most affected** households can **reduce** the economic **costs** of climate change mitigation policy
- Crucial for a sustainable transition, which should not come at the cost of the most vulnerable
- To the extent that energy demand is **inelastic**, this should **not compromise** emission reductions
 - Turns out to be particularly the case for low-income households

Check robustness with respect to

- Selection of events: robust to just using NAP/auction events, robust to dropping largest events
- **Background noise**: robust to controlling for confounding news using a heteroskedasticity-based approach
- **Sample and specification choices**: robust to estimating on shorter sample, to lag order, and to using a smaller system to estimate effects

▶ Details

Conclusion

- New evidence on the **economic effects** of **carbon pricing** from the European carbon market
- Policy successful in reducing emissions, but comes at an economic cost
- These costs are not borne equally across society, policy is regressive
- Targeted fiscal policy can reduce these costs without compromising emission reductions

Thank you!

Autocorrelation

Figure 6: The autocorrelation function of the carbon policy surprise series

Table 3: Granger causality tests

Variable	p-value		
Instrument	0.9066		
EUA price	0.7575		
HICP energy	0.7551		
GHG emissions	0.7993		
HICP	0.8125		
Industrial production	0.7540		
Policy rate	0.9414		
Unemployment rate	0.9310		
Stock prices	0.9718		
REER	0.9075		
Joint	0.9997		

Orthogonality

Shock	Source	ρ	p-value	п	Sample
Monthly measures					
Global oil market					
Oil supply	Kilian (2008) (extended)		0.61	104	2005M05-2013M12
	Kilian (2009) (updated)	-0.02	0.76	164	2005M05-2018M12
	Caldara, Cavallo, and Iacoviello (2019)	-0.05	0.57	128	2005M05-2015M12
	Baumeister and Hamilton (2019)	-0.11	0.17	164	2005M05-2018M12
	Känzig (2021) (updated)	0.02	0.83	164	2005M05-2018M12
Global demand	Kilian (2009) (updated)	0.01	0.93	164	2005M05-2018M12
	Baumeister and Hamilton (2019)	-0.03	0.69	164	2005M05-2018M12
Oil-specific demand	Kilian (2009) (updated)	0.05	0.55	164	2005M05-2018M12
Consumption demand	Baumeister and Hamilton (2019)	0.05	0.51	164	2005M05-2018M12
Inventory demand	Baumeister and Hamilton (2019)	-0.03	0.68	164	2005M05-2018M12
Monetary policy					
Monetary policy shock	Jarociński and Karadi (2020)	0.02	0.80	140	2005M05-2016M12
Central bank info	Jarociński and Karadi (2020)	0.03	0.75	140	2005M05-2016M12
Financial & uncertainty					
Financial conditions	BBB spread residual	0.06	0.43	164	2005M05-2018M12
Financial uncertainty	VIX residual (Bloom, 2009)	0.10	0.22	164	2005M05-2018M12
	VSTOXX residual	0.05	0.50	164	2005M05-2018M12
Policy uncertainty	Global EPU (Baker, Bloom, and Davis, 2016)	0.03	0.71	164	2005M05-2018M12
Quarterly measures					
Fiscal policy	Euro area (Alloza, Burriel, and Pérez, 2019)	0.12	0.44	43	2005Q2-2015Q4
	Germany	0.22	0.15	43	2005Q2-2015Q4
	France	-0.06	0.69	43	2005Q2-2015Q4
	Italy	0.28	0.07	43	2005Q2-2015Q4
	Spain	0.10	0.52	43	2005Q2-2015Q4

Notes: The table shows the correlation of the carbon policy surprise series with a wide range of different shock measures from the literature, including global oil market shocks, monetary policy, financial and uncertainty shocks. ρ is the Pearson correlation coefficient, the p-value corresponds to the test whether the correlation is different from zero and n is the sample size.

Background noise

Notes: This figure shows the carbon policy surprise series together with the surprise series constructed on a selection of control days that do not contain a regulatory announcement but are otherwise similar.

Data

h	HICP energy	Emissions	HICP	IP	Policy rate	Unemp. rate	Stock prices	REER
Pan	el A: Forecast var	iance decomposi	ition (assuming	invertibility)				
6	0.42	0.12	0.49	0.02	0.00	0.07	0.13	0.00
	[0.20, 0.83]	[0.02, 0.41]	[0.26, 0.87]	[0.00, 0.08]	[0.00, 0.01]	[0.01, 0.56]	[0.03, 0.65]	[0.00, 0.01]
12	0.34	0.25	0.35	0.15	0.03	0.23	0.15	0.00
	[0.14, 0.73]	[0.07, 0.70]	[0.14, 0.69]	[0.04, 0.48]	[0.01, 0.18]	[0.06, 0.84]	[0.04, 0.66]	[0.00, 0.01]
24	0.36	0.32	0.25	0.27	0.13	0.37	0.11	0.09
	[0.15, 0.70]	[0.11, 0.74]	[0.08, 0.56]	[0.09, 0.65]	[0.03, 0.53]	[0.12, 0.90]	[0.03, 0.48]	[0.03, 0.27]
60	0.38	0.39	0.17	0.22	0.11	0.38	0.12	0.25
	[0.18, 0.71]	[0.16, 0.72]	[0.05, 0.45]	[0.08, 0.55]	[0.03, 0.41]	[0.13, 0.82]	[0.03, 0.45]	[0.08, 0.56]
Pan	el B: Forecast var	iance ratio (robı	ust to non-invert	ibility)				
6	0.04, 0.31	0.02, 0.18	0.07, 0.49	0.02, 0.14	0.00, 0.02	0.05, 0.35	0.00, 0.03	0.00, 0.00
	[0.02, 0.54]	[0.01, 0.41]	[0.04, 0.74]	[0.01, 0.34]	[0.00, 0.05]	[0.02, 0.59]	[0.00, 0.08]	[0.00, 0.02]
12	0.05, 0.33	0.03, 0.18	0.07, 0.50	0.02, 0.16	0.00, 0.02	0.05, 0.36	0.01, 0.04	0.00, 0.01
	[0.03, 0.53]	[0.01, 0.36]	[0.04, 0.73]	[0.01, 0.33]	[0.00, 0.05]	[0.03, 0.60]	[0.00, 0.08]	[0.00, 0.02]
24	0.05, 0.32	0.03, 0.19	0.07, 0.50	0.02, 0.18	0.01, 0.08	0.08, 0.55	0.01, 0.04	0.00, 0.01
	[0.02, 0.52]	[0.01, 0.36]	[0.04, 0.72]	[0.01, 0.35]	[0.01, 0.19]	[0.04, 0.78]	[0.00, 0.09]	[0.00, 0.02]
60	0.05, 0.32	0.03, 0.19	0.07, 0.50	0.02, 0.18	0.01, 0.08	0.09, 0.55	0.01, 0.04	0.00, 0.01
	[0.02, 0.52]	[0.01, 0.35]	[0.04, 0.72]	[0.01, 0.35]	[0.00, 0.18]	[0.04, 0.78]	[0.00, 0.09]	[0.00, 0.02]

Table 4: Variance decomposition

To better understand **role** of **power sector** perform event study using daily futures and stock prices

$$q_{i,d+h} - q_{i,d-1} = \beta_0^i + \psi_h^i CPSurprise_d + \beta_{h,1}^i \Delta q_{i,d-1} + \ldots + \beta_{h,p}^i \Delta q_{i,d-p} + \xi_{i,d,h}$$

- $q_{i,d+h}$: (log) price of asset *i*, *h* days after event *d*
- *CPSurprise_d*: carbon policy surprise on event day
- ψ_h^i : effect on asset price *i* at horizon *h*

The role of energy prices

Figure 9: Carbon price and stock market indices

- Carbon futures prices increase significantly after carbon policy surprise
- Stock market does not respond on impact but only falls with a lag
- Utilities sector is the only sector displaying a positive response
 - Consistent with interpretation that utility sector **pass-through** emissions cost to their customers

Group by expenditure

Group by permanent income

Group by age

Group by education

Group by housing tenure

Earnings and financial income

External validity

Excluding events regarding cap

First stage regression: F-statistic: 20.29, R²: 3.58%

Excluding events regarding international credits

First stage regression: F-statistic: 15.00, $R^2{:}$ 2.90%

Only using events regarding NAPs

First stage regression: F-statistic: 14.42, R²: 2.83%

Excluding extreme events

First stage regression: F-statistic: 5.77, R²: 1.06%

Heteroskedasticity-based identification

First stage regression: F-statistic: 37.55, R²: 51.68%

2005-2018 sample

First stage regression: F-statistic: 14.11, R²: 4.49%

Responses from smaller VAR

First stage regression: F-statistic: 13.58, R^2 : 3.32%

VAR with 3 lags

First stage regression: F-statistic: 9.73, $R^2 \!\!:$ 2.86%

VAR with 9 lags

First stage regression: F-statistic: 14.89, R²: 2.79%