Modelling green innovation decision making with regulatory incentives and firm acquisitions

Inês Carrilho Nunes

Margarida Catalão-Lopes

1st IAEE Online Conference

June 2021

INTRODUCTION

- The need to address climate change is a major global concern and evolving preferences, regulations, and technologies create new market opportunities from green stakeholders, especially consumers.
- Consumers are increasingly aware of the impact that their consumption choices have and are paying more attention to sustainability. Thus, supplying green products is emerging as a firm strategy for reaching these environmentally conscious consumers (especially via vertical differentiation).
- Firms gain and sustain competitive advantage by developing long-term corporate technology strategies for acquiring technological resources. <u>Yet, many firms are hesitant to conduct low-carbon innovation.</u>
- Innovation can also be obtained via acquiring a firm that already owns the technology desired or has relevant know-how/production capabilities.

- Relying only on the market is not enough to allow social investment to reach optimal levels, given the multiple externalities of green technological innovation.
- <u>Government incentives and regulations are needed to address market failures and barriers.</u> The government
 must promote and guide firms to a low-carbon technological innovation path, using its ability to provide firms
 with optimal incentives to innovate.
- Although different regulations may have different effects on low-carbon technological innovation, the literature
 makes it clear that regulations can improve clean performance by affecting the costs and benefits of the
 environmental behavior of firms.

- This paper explores green innovation impetus driven by market forces and incentives.
- Due to the multi-agent nature of the problem, game theory is used to assess low-carbon innovation decisionmaking by a firm and green consumption choices by a consumer. Both players are rational aiming at maximizing their payoffs and are representative of consumers and producers in the society.

METHODOLOGY MODELS

- The models consist of consumer-firm games. Nash equilibria in both pure and mixed strategies are derived.
- 5 scenarios:
 - i. No government intervention;
 - ii. Government intervention: the consumer that chooses green receives a subsidy;
 - iii. Government intervention: the government applies discriminatory policy to the firm;
 - iv. Firm can acquire a startup in order to obtain the desirable green innovation, instead of investing in R&D and develop the innovation in-house;
 - v. Sequential decision making: one side of the market observes the characteristics of the other side before making its own decision.

BASE MODEL

Table 1 Representation of the strategic form game.			
		Firi	m
		PG	PNG
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}
	CNG	C_{21}, F_{21}	C_{22}, F_{22}

Table 2 Payoffs f	for the consumer and the firm.
Payoffs	
Consumer	$C_{11} = a$
	$C_{12} = a - x_3$
	$C_{21} = a - x_1$
	$C_{22} = a - x_2$
Firm	$F_{11} = b - y$
	$F_{12} = b - z_2$
	$F_{21} = b - y - z_1$
	$F_{22} = b$

BASE MODEL

Table 1 Representation of the strategic form game.			
		Firi	m
		PG	PNG
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}
	CNG	C_{21}, F_{21}	C_{22}, F_{22}

Table 2 Payoffs f	or the consumer and the firm.
Payoffs	
Consumer	$C_{11} = a$
	$C_{12} = a - x_3$
	$ \begin{array}{cccc} C_{21} &=& a - x_1 \\ C_{22} &=& a - x_2 \end{array} $
Firm	$F_{11} = b - y$
	$F_{12} = b - z_2$
	$F_{21} = b - y - z_1$
	$F_{22} = b$

a : consumer's base payoff

BASE MODEL

Table 1 Representation of the strategic form game.			
		Fin	m
		PG	PNG
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}
	CNG	C_{21}, F_{21}	C_{22}, F_{22}

Table 2 Payoffs f	for the consumer and the firm.
Payoffs	
Consumer	$C_{11} = a$
	$\begin{array}{l} C_{11} = a \\ C_{12} = a - x_3 \end{array}$
	$C_{21} = a - x_1$
	$C_{22} = a - x_2$
Firm	$F_{11} = b - y$
	$F_{12} = b - z_2$
	$F_{21} = b - y - z_1$
	$F_{22} = b$

a : consumer's base payoff

x : utility loss (due to mismatch decisions & non-green purchase)

BASE MODEL

Table 1 Representation of the strategic form game.			
		Fire	m
		PG	PNG
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}
	CNG	C_{21}, F_{21}	C_{22}, F_{22}

Table 2 Payoffs f	or the consumer and the firm.
Payoffs	
Consumer	$C_{11} = a$
	$C_{12} = a - x_3$
	$C_{21} = a - x_1$
	$C_{22} = a - x_2$
Firm	$F_{11} = b - y$ $F_{12} = b - z_2$
	$F_{21} = b - y - z_1$
	$F_{22} = b$

a : consumer's base payoff

x : utility loss (due to mismatch decisions & non-green purchase)

b : firm's base payoff

BASE MODEL

Table 1 Representation of the strategic form game.			
		Fire	n
		PG	PNG
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}
	CNG	C_{21}, F_{21}	C_{22}, F_{22}

Table 2 Payoffs f	for the consumer and the firm.
Payoffs	
Consumer	$C_{11} = a$
	$C_{12} = a - x_3$
	$C_{21} = a - x_1$
	$C_{22} = a - x_2$
Firm	$F_{11} = b - y$
	$F_{12} = b - z_2$
	$F_{21} = b - y - z_1$
	$F_{22} = b$

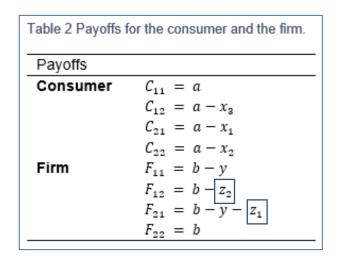
a : consumer's base payoff

- x : utility loss (due to mismatch decisions & non-green purchase)
- *b* : firm's base payoff
- *y* : cost of innovating in low-carbon technologies

BASE MODEL

Table 1 Representation of the strategic form game.			
		Fire	m
		PG	PNG
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}
	CNG	C_{21}, F_{21}	C_{22}, F_{22}

Table 2 Payoffs f	for the consumer and the firm.
Payoffs	
Consumer	$C_{11} = a$
	$C_{12} = a - x_3$
	$C_{21} = a - x_1$
	$C_{22} = a - x_2$
Firm	$F_{11} = b - y$
	$F_{12} = b - z_2$
	$F_{21} = b - y - z_1$
	$F_{22} = b$


a : consumer's base payoff

- x : utility loss (due to mismatch decisions & non-green purchase)
- *b* : firm's base payoff
- *y* : cost of innovating in low-carbon technologies

z: revenue loss (due to mismatch between the product offered and the consumer's decision)

BASE MODEL

Table 1 Representation of the strategic form game.				
		Fire	n	
		PG	PNG	
Consumer	CG	C_{11}, F_{11}	C_{12}, F_{12}	
	CNG	C_{21}, F_{21}	C_{22}, F_{22}	

Tá	able 3 Conditions for the payoffs order
(Consumer Payoffs
($C_{11} > C_{21} > C_{22} > C_{12}$; $x_1 < x_2 < x_3$
ł	Firm Payoffs
l	$F_{22} > F_{11} > F_{21} > F_{12}$; $0 < y < z_2 - z_1$
ł	${F_{22}} > {F_{11}} > {F_{12}} > {F_{21}}$; ${z_2 - z_1 < y < z_2}$
ł	$F_{22} > F_{12} > F_{11} > F_{21}$; $y > z_2$

a : consumer's base payoff

- x : utility loss (due to mismatch decisions & non-green purchase)
- *b* : firm's base payoff
- y : cost of innovating in low-carbon technologies

z: revenue loss (due to mismatch between the product offered and the consumer's decision

RESULTS MODEL A - NO GOVERNMENT INTERVENTION

Table 4 Representa	tion of the stra	tegic form game with the payo	ffs of model A.
		Fi	irm
		PG	PNG
Consumer	CG	a , b — y	$a - x_3$, $b - z_2$
Consumer	CNG	$a - x_1$, $b - y - z_1$	$a - x_2$, b

- Solving the game in <u>pure strategies</u>:
 - No dominant strategy for the consumer;
 - If $y > z_2$, the firm's dominant strategy is to *Produce Non-Green*. The N.E. is (*CNG*, *PNG*);
 - If $y < z_2$, the firm does not have a dominant strategy and there are two N.E.: (*CG*, *PG*) and (*CNG*, *PNG*).
- The N.E. depends on the relationship between y, how much it costs the firm to seek lowcarbon innovation, and z_2 , how much the company loses in terms of revenues when selling a non-green product to a consumer that has green behavior.

RESULTS MODEL A - NO GOVERNMENT INTERVENTION

Table 4 Representation of the strategic form game with the payoffs of model A.				
		F	irm	
		PG	PNG	
Consumer	CG	a , b — y	$a - x_3$, $b - z_2$	
Consumer	CNG	$a - x_1$, $b - y - z_1$	$a-x_2$, b	

- Solving the game in <u>mixed strategies</u>:
 - Consumers adopt a green attitude with probability $p = \frac{y+z_1}{z_1+z_2}$ and firms produce green with

probability $q = \frac{x_3 - x_2}{x_3 - x_2 + x_1}$;

• The likelihood of consumers adopting a green attitude is increasing in y and in z_1 and decreasing in z_2 . The likelihood of firms producing green is increasing in x_3 and decreasing in x_1 and x_2 .

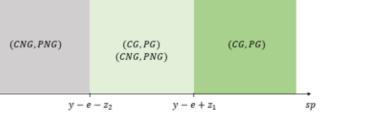
RESULTS MODEL A - NO GOVERNMENT INTERVENTION

		Firm		
		PG	PNG	
Consumer	CG	a , b — y	$a - x_3$, $b - z_2$	
Consumer	CNG	$a - x_1, b - y - z_1$	$a - x_2$, b	

Table 5 Sum of pa	ayoffs.
	Sum of payoffs
(CG; PG)	a + b - y
(CG; PNG)	$a - x_3 + b - z_2$
(CNG; PG)	$a - x_1 + b - y - z_1$
(CNG; PNG)	$a - x_2 + b$

- The best outcome for the two sides of the market is when both parties, consumers and producers, are aligned towards the same goal:
 - Welfare (*CNG*, *PNG*) > Welfare (*CG*, *PNG*) | Welfare (*CG*, *PG*) > Welfare (*CNG*, *PG*)
- Total welfare when both players are green is higher than total welfare when both players are non-green if and only if $y < x_2$.

MODEL B1 - GOVERNMENT INTERVENTION: CONSUMER SUBSIDY POLICY


able 6 Representa	ation of the str	ategic form game with the payofi	fs of model B1.
		Fir	m
		PG	PNG
Consumer	CG	$a + s_c$, $b - y$	$a-x_3$, $b-z_2$
Consumer	CNG	$a + s_{c} - x_{1}$, $b - y - z_{1}$	$a - x_2$, b

- Now the payoffs of the consumer also include the subsidy parameter (s_c) .
- The pure strategies solution for this game is the same as in model A and the mixed strategies solution for this game is also the same as in model A, showing that giving a subsidy to the consumption of green goods does not affect the consumer's and firm's decisions.

MODEL B2 - GOVERNMENT INTERVENTION: FIRM SUBSIDY POLICY (DISCRIMINATORY POLICY)

Table 7 Representation of the strategic form game with the payoffs of model B2.				
		Fir	m	
		PG	PNG	
Consumer	CG CNG	$a, b - y + s_p$ $a - x_1, b - y - z_1 + s_p$	$a - x_3, b - z_2 - e$ $a - x_2, b - e$	

- Solving the game in <u>pure strategies</u>:
 - No dominant strategy for the consumer;
 - If $s_P > y e + z_1$ (and thus $s_P > y e z_2$), the firm has a dominant strategy *Produce Green* – and the Nash equilibrium is (*CG*, *PG*);
 - If $s_P < y e z_2$, the firm has as dominant strategy *Produce Non-Green* and the Nash equilibrium is (*CNG*, *PNG*).
 - When $y e z_2 < s_P < y e + z_1$ there is no dominant strategy for the firm, but there are two Nash equilibria, (*CG*, *PG*) and (*CNG*, *PNG*).

10

MODEL B2 - GOVERNMENT INTERVENTION: FIRM SUBSIDY POLICY (DISCRIMINATORY POLICY)

Table 7 Representa	tion of the stra	ategic form game with the payoff	s of model B2.
		Fi	m
		PG	PNG
Consumer	CG CNG	$a, b - y + s_p$ $a - x_1, b - y - z_1 + s_p$	$a - x_3$, $b - z_2 - e$ $a - x_2$, $b - e$

- Solving the game in <u>mixed strategies</u>:
 - Consumers adopt a green attitude with probability $p = \frac{y+z_1-e-s_p}{z_1+z_2}$ and firms produce green

with probability $q = \frac{x_3 - x_2}{x_3 - x_2 + x_1}$;

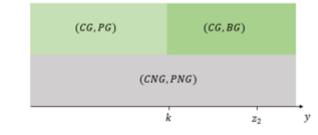
- Notice that *q* is not affected by the discriminatory policy, *p* is.
- Under this policy intervention, the value of p is lower than in the scenario with no policy

 $\left(\frac{y+z_1-e-s_p}{z_1+z_2} < \frac{y+z_1}{z_1+z_2}\right)$. Measures that act to reduce the opportunity cost of investing in low-

carbon strategies contribute to diminish probability p.

MODEL C - ACQUISITION AS AN INNOVATION STRATEGY

Table 8 Model C: Representation of the strategic form game with the payoffs of model C.						
		Firm				
		PG	PNG	BG		
Consumer	CG	a , b — y	$a-x_3$, $b-z_2$	$a - x_4$, $b - k$		
Consumer	CNG	$a - x_1$, $b - y - z_1$	$a - x_2$, b	$a-x_1-x_4$, $b-z_1-k$		


- We explore the possibility of the firm acquiring an innovative startup as a means of developing the green product, assuming there is no government intervention;
- The difference between this model and the previous models is the firm's extra strategy (*Buy Green*) and the parameters x_4 , the utility loss that results from a more concentrated market (less options available for the consumer), and *k*, the acquisition cost;
- If the acquisition goes forward, the firm has to pay the acquisition cost k but saves the innovation cost y.

MODEL C - ACQUISITION AS AN INNOVATION STRATEGY

Table 8 Model C: Representation of the strategic form game with the payoffs of model C.						
		Firm				
		PG	PNG	BG		
Consumer	CG CNG	a, b - y $a - x_1, b - y - z_1$	$a - x_3$, $b - z_2$ $a - x_2$, b	$a-x_4$, $b-k$ $a-x_1-x_4$, $b-z_1-k$		

• <u>Regarding pure strategies</u>:

- k can be higher or lower than z₂ (the revenue lost when selling a non-green product to a consumer with a green attitude). Depending on the parameters' combinations, we can have a single Nash equilibrium (non-green) or two (one green and the other non-green);
- N.E. (CG, BG) is only obtainable if k < z₂. The undesirable
 N.E. (CNG, PNG) is always an equilibrium regardless of the relationship between k and z₂.

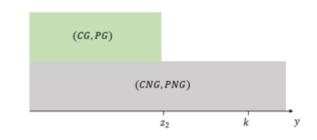


Figure 3 - Nash equilibria in pure strategies as a function of y, when $k > z_2$.

MODEL C - ACQUISITION AS AN INNOVATION STRATEGY

Table 8 Model C: Representation of the strategic form game with the payoffs of model C.						
		Firm				
		PG	PNG	BG		
Consumer	CG CNG	a, b - y $a - x_1, b - y - z_1$	$a - x_3$, $b - z_2$ $a - x_2$, b	$a - x_4$, $b - k$ $a - x_1 - x_4$, $b - z_1 - k$		

- Solving the game in <u>mixed strategies</u>:
 - The probability of the firm offering a green alternative is $q + r = \frac{x_3 x_2}{x_1 + x_3 x_2}$, where *q* is the probability of the firm investing in innovation in-house and *r* the probability of the firm choosing an acquisition;
 - If $k > z_2$ or if $y < k < z_2$ the firm always prefers to invest in the innovation in-house. The probability of the consumer choosing a green product is $p = \frac{y+z_1}{z_1+z_2}$ (like in model A);
 - If $k < z_2$ and k < y the firm always chooses acquisition. The probability of the consumer choosing a

green product is
$$s = \frac{k+z_1}{z_1+z_2}$$

SEQUENTIAL GAMES - FIRM DECIDES FIRST

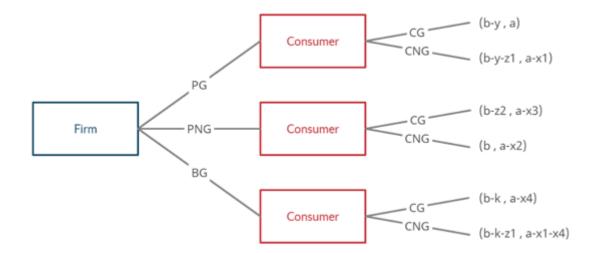


Figure 4 - Representation of sequential game in which the firm decides first.

• The subgame perfect Nash equilibrium is (*CNG*, *PNG*).

SEQUENTIAL GAMES - CONSUMER DECIDES FIRST

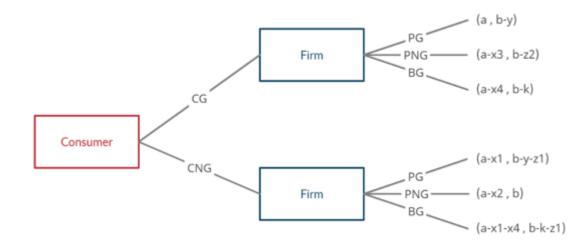


Figure 4 - Representation of sequential game in which the consumer decides first.

A sequential game in which the players could make a second round of decisions was also solved but the Subgame Perfect Nash Equilibrium possibilities are the same as in the sequential game with just one round.

- If the consumer chooses Consume Non-Green the subgame perfect Nash equilibrium will inevitably be (CNG, PNG).
- If the consumer chooses Consume Green several subgame perfect Nash equilibria arise from the different possible relationships between parameters y, k and z₂:

Table 9 - Subgame perfect Nash equilib when the consumer decides first.		
Min{z ₂ ,y,k}	Subgame Perf. NE]
z_2	(CNG, PNG)	
у	(CG, PG)	
k	(CG,BG)]

CONCLUSIONS

- The best outcome (in terms of welfare) for the two sides of the market is when both parties, consumers and producers, are aligned towards the same goal;
- An outcome in which both firms and consumers prefer to have a green attitude is obtainable but, either there is government intervention or consumers take a leadership position and dictate the rules of the market;
- Under firm discriminatory policy the proportion of consumers with a green attitude required for the firm to opt to innovate in low-carbon strategies is reduced (the firm is more likely to innovate and offer green products);
- A green outcome via acquisition is only obtainable if the acquisition cost is lower than the revenue lost due to the mismatch between demand and supply.

REFERENCES

- Chen, H., Wang, J., and Miao, Y. (2021). Evolutionary game analysis on the selection of green and low carbon innovation between manufacturing enterprises. *Alexandria Engineering Journal*, 60, 2139-2147. https://doi.org/10.1016/j.aej.2020.12.015
- Fischer, C., and Lyon, T.P. (2014). Competing Environmental Labels. *Journal of Economics & Management Strategy*, 23(3), 692-716. https://doi.org/10.1111/jems.12061
- Huang, W., Zhou, W., Chen, J., and Chen, X. (2019). The government's optimal subsidy scheme under Manufacturers' competition of price and product energy efficiency. *Omega*, 84, 70-101. https://doi.org/10.1016/j.omega.2018.04.006
- Toolsema, L.A. (2009). Interfirm and Intrafirm Switching Costs in a Vertical Differentiation Setting: Green versus Nongreen Products. *Journal of Economics & Management Strategy*, 18(1), 263-284. https://doi.org/10.1111/j.1530-9134.2009.00214.x
- Wang, M., Cheng, Z., Li, Y., Li, J., Guan, K. (2020). Impact of market regulation on economic and environmental performance: A game model of endogenous green technological innovation. *Journal of Cleaner Production*, 277, 123969. https://doi.org/10.1016/j.jclepro.2020.123969

THANK YOU FOR YOUR ATTENTION!