Mathematical Models

Results and Insights

Conclusion

Investment In Smart Homes Consumer And Distributor Perspectives

Seyyedreza Madani

joint work with Pierre-Olivier Pineau

June 7, 2021

Seyyedreza Madani Investment In Smart Homes **HEC Montreal**

Results and Insights

1 Introduction

- **2** Mathematical Models
- **3** Results and Insights

4 Conclusion

Seyyedreza Madani Investment In Smart Homes <□▶ < @▶ < 클▶ < 클▶ 클 · 이익@ HEC Montreal

Results and Insights

1 Introduction

- **2** Mathematical Models
- **3** Results and Insights
- **4** Conclusion

Seyyedreza Madani Investment In Smart Homes

Mathematical Models

Results and Insights

Conclusion

Rational behind V2G

Figure 1: Generation and load in a sample week in March

Seyyedreza Madani

Investment In Smart Homes

HEC Montreal

Mathematical Models

Results and Insights

Conclusion

Smart Home Management

Figure 2: dcbel device

Seyyedreza Madani	HEC Montreal
Investment In Smart Homes	5 / 46

Mathematical Models

Results and Insights

Image: A matrix

Conclusion

Previous studies

• The influences of Vehicle to Grid (V2G) system and its integration with RESs on the environment, society and economy [BTM21]

Seyyedreza Madani Investment In Smart Homes

Mathematical Models Introduction

Results and Insights

Image: A matrix

-

Conclusion

Previous studies

000000

- The influences of Vehicle to Grid (V2G) system and its integration with RESs on the environment, society and economy [BTM21]
- Ownership challenge: Aggregators and Other Actors in the market [NZdRKS19]

Sevvedreza Madani Investment In Smart Homes **HEC** Montreal

Mathematical Models Introduction

Results and Insights

< < >> < <</>

∃ >

Conclusion

Previous studies

000000

- The influences of Vehicle to Grid (V2G) system and its integration with RESs on the environment, society and economy [BTM21]
- Ownership challenge: Aggregators and Other Actors in the market [NZdRKS19]
- Profitability of V2H [LP20]

Sevvedreza Madani Investment In Smart Homes **HEC** Montreal

Results and Insights

< < >> < <</>

Conclusion

Previous studies

Introduction

000000

- The influences of Vehicle to Grid (V2G) system and its integration with RESs on the environment, society and economy [BTM21]
- Ownership challenge: Aggregators and Other Actors in the market [NZdRKS19]
- Profitability of V2H [LP20]
- Premium tariff rates for V2G [Ric13]

Mathematical Models

Results and Insights

Image: A math a math

Conclusion

Previous studies

000000

- The influences of Vehicle to Grid (V2G) system and its integration with RESs on the environment, society and economy [BTM21]
- Ownership challenge: Aggregators and Other Actors in the market [NZdRKS19]
- Profitability of V2H [LP20]
- Premium tariff rates for V2G [Ric13]
- Some case studies on the profitability of V2G: in the Netherlands [vdV20], China [LTL⁺20] and, India [LAAP⁺21]

Introduction 0000●0 Mathematical Models

Results and Insights

Conclusion

Investment Scenarios

Scenario	Capacity of the stationary battery (kWh)	Capacity of the EV's battery (kWh)	Solar PV availability	Total cost (purchase and installation, USD)
0 – Status quo	×	×	×	0
1 – Battery	40.5	×	×	27,300
2 – Battery + PV	27	×	Yes	35,125
3 – EV	×	36	×	4,000
4 - EV + PV	×	36	Yes	17,145
5 – Battery + EV + PV	10	36	Yes	23,724

Investment cost of the scenarios

Seyyedreza Madani Investment In Smart Homes ▶ ≣ ৵ঀ৻ HEC Mont<u>real</u>

Mathematical Models

Results and Insights

Image: Image:

-

Conclusion

Main problems

• Which agent? Profitability of investment in smart home for the distributor and the prosumer

Seyyedreza Madani Investment In Smart Homes

Mathematical Models

Results and Insights

3

Conclusion

Main problems

- Which agent? Profitability of investment in smart home for the distributor and the prosumer
- Which scenario? The best investment scenario for smart home technologies

Mathematical Models

Results and Insights

Image: A matrix

< ∃ >

Conclusion

Main problems

- Which agent? Profitability of investment in smart home for the distributor and the prosumer
- Which scenario? The best investment scenario for smart home technologies
- Which rate? Effects of different tariff structures on profitability of smart home technologies

Mathematical Models

Results and Insights

Image: A math a math

Main problems

- Which agent? Profitability of investment in smart home for the distributor and the prosumer
- Which scenario? The best investment scenario for smart home technologies
- Which rate? Effects of different tariff structures on profitability of smart home technologies
- Consequences? Effects of different scenarios on the annual cost and monthly peak-loads

Results and Insights

2 Mathematical Models

3 Results and Insights

▲ロト ▲□ ▼ ▲目 ▼ ▲目 ▼ ● ● ● ● ● ●

Seyyedreza Madani Investment In Smart Homes

9 / 46

Introduction

Mathematical Models

Results and Insights

Conclusion

Assumptions

• All parameters are deterministic and given in the beginning

・ロ > ・ (引 > ・ (三 > ・ (二 > ・ (□ > ・ (□ > ・ (□ > ・ (□ > ・ (□ > ・ (□ > ・ (□ > ・ (□ > ・ (□ > ・ (□ >) > ・ (□ >) > ・ (□ > ・ (□ > ・ (□ >) > ・ (□ >) > ・ (□ >) > ・ (□ > ・ (□ >) > ・ (□ >) > ・ (□ >) > ・ (□ >) > ・ (□ >) > (□

Seyyedreza Madani Investment In Smart Homes

e montrear

Introduction	

Mathematical Models

Results and Insights

< < >> < <</>

Conclusion

- All parameters are deterministic and given in the beginning
- Real consumption and generation records are used (provided by the Green Mountain Power (GMP) distribution company in Vermont)

Mathematical Models

Results and Insights

< < >> < <</>

Conclusion

- All parameters are deterministic and given in the beginning
- Real consumption and generation records are used (provided by the Green Mountain Power (GMP) distribution company in Vermont)
- The same charge/discharge limitation and efficiency rates are used for battery and EV

Mathematical Models

Results and Insights

Image: A math a math

Conclusion

- All parameters are deterministic and given in the beginning
- Real consumption and generation records are used (provided by the Green Mountain Power (GMP) distribution company in Vermont)
- The same charge/discharge limitation and efficiency rates are used for battery and EV
- In GMP's model, Real-Time Locational Marginal Price (RTLMP) (\$/kWh) in Vermont is used. The buying and selling prices are equal.

Mathematical Models

Results and Insights

・ロン ・日 ・ ・ ヨン・

Conclusion

In prosumer model, five tariff structures are used:

Rate Name	Fixed charge		Rate
	(\$/day)		(\$/kWh)
Flat (FX)	0.492	Usage	0.16859
Time-of-Use	0.651	Peak-Load Usage	0.26771
(TOU)		Off-Peak Usage	0.11411
FX for home &	0.651	General Usage	0.16859
TOU for EV		Off-Peak EV Usage	0.12831
RTLMP	0	price updates every	5 minutes
Buying at TOU	0.651	Peak-Load Usage	0.26771
from grid &		Off-Peak Usage	0.11411
Selling at RTLMP		price updates every	5 minutes
back to grid			

Seyyedreza Madani

Investment In Smart Homes

HEC Montreal

Results and Insights

$t \in \{\mathcal{T}\}$ episode t in horizon $[1, 2, 3, \dots, T]$ $k \in \{\mathcal{K}\}$ month k in horizon $[1, 2, 3, \dots, K]$

• A full year (8,760 hours) with 15 minutes time-steps (t) is considered here.¹

¹Note that when 1 kWh is used during this time interval means that 4 kW of power/capacity are being used **HEC** Montreal

Sevvedreza Madani

Investment In Smart Homes

trod	uctio	n	

Mathematical Models

Results and Insights

Conclusion

	$B^{max} = capacity (kWh) of battery$	=
	$B^{min} =$ minimum allowed electricity (kWh) in battery	=
	E^{max} = capacity (kWh) of EV	=
	$E^{min} =$ minimum allowed electricity (kWh) in EV	=
	$U^c={ m charging\ capacity\ (kWh)\ of\ battery/EV\ during\ the\ interval}$	-
	$U^d = discharging capacity (kWh) of battery/EV during the interval$	=
1	$1 - \eta^{c} = charging loss rate$	=
1	$1-\eta^d={\sf discharging\ loss\ rate}$	=

Э.

<ロ> <四> <四> <日> <日> <日> <日> <日</p>

Mathematical Models

Results and Insights

Conclusion

Parameters cntd.

$$P^{rns} = \text{cost coefficient ($/kW) of RNS}$$

$$P^{cap} = \text{cost coefficient ($/kW) of capacity}$$

$$P_t^{buy} =$$
 electricity price ($\frac{1}{k}$) to buy from grid at time t

$$P_t^{sell} =$$
 electricity price (\$/kWh) to sell to grid at time t

$$L_t = \text{load (kWh) at time } t$$

$$A_t$$
 = availability of EV at time t under the chosen scenario

$$V_t = {\sf EV}$$
 usage (kWh) (for vehicle riding) at time t under the chosen so

$$R_t$$
 = electricity generation (kWh) from solar panel t

$$I^{trade}$$
 = indicates if it is allowed to sell electricity to grid

э.

HEC Montreal

イロト イヨト イヨト イヨト

Mathematical Models

Results and Insights

Conclusion

Decision Variables

 x_t^{GL} = electricity (kWh) from grid to load at time t x_t^{GB} = electricity (kWh) from grid to battery at time t x_t^{GE} = electricity (kWh) from grid to EV at time t x_t^{RL} = electricity (kWh) from solar panel to load at time t x_t^{RB} = electricity (kWh) from solar panel to battery at time t x_t^{RE} = electricity (kWh) from solar panel to EV at time t x_t^{RE} = electricity (kWh) from solar panel to EV at time t

イロト イポト イヨト イヨト 三日

Results and Insights

Decision Variables cntd.

$$x_t^{BL}$$
 = electricity (kWh) from battery to load at time t
 x_t^{EL} = electricity (kWh) from EV to load at time t
 x_t^{BG} = electricity (kWh) from battery to grid at time t
 x_t^{EG} = electricity (kWh) from EV to grid at time t
 x_k^{peak} = maximum electricity (kWh) taken from grid in an episode in more

2

Mathematical Models

Results and Insights

Conclusion

State variables

 b_t^B = available electricity (kWh) in stationary battery at time t b_t^E = available electricity (kWh) in EV battery at time t

Seyyedreza Madani Investment In Smart Homes HEC Montreal

Mathematical Models

Results and Insights

Conclusion

Distributor's Model I

objective function

$$\min \sum_{t=1}^{T} \left(P_t^{buy}(x_t^{GL} + x_t^{GB} + x_t^{GE}) \right)$$
 buying cost
$$- P_t^{sell}(x_t^{RG} + \eta^d x_t^{BG} + \eta^d x_t^{EG}))$$
 selling revenue
$$+ 4 \sum_{k=1}^{12} \left(P^{rns} + 1.35P^{cap} \right) x_k^{peak}$$
 network charge (1)

Seyyedreza Madani

Investment In Smart Homes

HEC Montreal

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Mathematical Models

Results and Insights

Image: A mathematical states and a mathem

Conclusion

Distributor's Model II

Subject to:

Covering load

$x_t^{GL} + \eta^d (x_t^{BL} + x_t^{EL}) + x_t^{RL} \ge L_t \qquad \forall t \qquad (2)$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э

Mathematical Models

Results and Insights

Image: A math a math

Conclusion

Distributor's Model III

availability of EV and stored energy limitation

$$x_t^{BL} + x_t^{BG} \le b_t^B \qquad \qquad \forall t \qquad (3)$$

$$x_t^{EL} + x_t^{EG} \le b_t^E A_t \qquad \qquad \forall t \qquad (4)$$

$$x_t^{GE} + x_t^{RE} \le E^{max} A_t \qquad \qquad \forall t \qquad (5)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

Mathematical Models

Results and Insights

Image: A math a math

Conclusion

Distributor's Model IV

charging and discharging limits

$$x_t^{BL} + x_t^{EL} + x_t^{BG} + x_t^{EG} \le U^d \qquad \forall t \qquad (6)$$

$$x_t^{GB} + x_t^{GE} + x_t^{RB} + x_t^{RE} \le U^c \qquad \forall t \qquad (7)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э

Mathematical Models

Results and Insights

Conclusion

Distributor's Model V

stored energy limitations

$$B^{min} \le b_t^B \le B^{max} \qquad \forall t \qquad (8)$$
$$E^{min} \le b_t^E \le E^{max} \qquad \forall t \qquad (9)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э

<ロ> <四> <四> <日> <日> <日> <日> <日</p>

Mathematical Models

Results and Insights

Conclusion

Distributor's Model VI

PV generation

$$x_t^{RL} + x_t^{RB} + x_t^{RE} + x_t^{RG} \le R_t \qquad \forall t \qquad (10)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

æ

Mathematical Models

Results and Insights

Conclusion

Distributor's Model VII

State transition

$$b_t^B + \eta^c (x_t^{GB} + x_t^{RB}) - (x_t^{BL} + x_t^{BG}) = b_{t+1}^B \forall t$$
(11)
$$b_t^E + \eta^c (x_t^{GE} + x_t^{RE}) - (x_t^{EL} + x_t^{EG}) - \frac{V_t}{\eta^d} = b_{t+1}^E \forall t$$
(12)

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э

Mathematical Models

Results and Insights

・ロン ・日 ・ ・ ヨン・

Conclusion

Distributor's Model VIII

peak load calculation

$$x_t^{GL} + x_t^{GB} + x_t^{GE} \le x_k^{peak} \forall t \in k, k$$
(13)

Seyyedreza Madani Investment In Smart Homes HEC Montreal 25 / 46

э.

Mathematical Models

Results and Insights

Conclusion

Distributor's Model IX

domain of the decision variables

$$\begin{array}{l} x_{t}^{RL}, x_{t}^{RB}, x_{t}^{RE}, x_{t}^{RG}, x_{t}^{BG}, x_{t}^{EG}, x_{t}^{BL}, \\ x_{t}^{EL}, x_{t}^{GL}, x_{t}^{GB}, x_{t}^{GE}, x_{k}^{Peak}, b_{t}^{B}, b_{t}^{E} \ge 0 \end{array} \qquad \forall t \qquad (14)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Mathematical Models

Results and Insights

・ロン ・日 ・ ・ ヨン・

Conclusion

Prosumer's Model I

objective function

$$\min \sum_{t=1}^{T} \left(P_t^{buy} (x_t^{GL} + x_t^{GB} + x_t^{GE}) - P_t^{sell} (x_t^{RG} + \eta^d x_t^{BG} + \eta^d x_t^{EG}) \right)$$
(15)

Seyyedreza Madani Investment In Smart Homes HEC Montreal 27 / 46

문 문

Mathematical Models

Results and Insights

・ロト ・回ト ・ヨト

Conclusion

Prosumer's Model II

Subject to: Constraints 2 to 12

Trade allowance

$$x_t^{RG} + x_t^{BG} + x_t^{EG} \le (U^d + R_t)I^{trade} \qquad \forall t \qquad (16)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

Mathematical Models

Results and Insights

Conclusion

Prosumer's Model III

domain of the decision variables

$$\begin{array}{l} x_{t}^{RL}, x_{t}^{RB}, x_{t}^{RE}, x_{t}^{RG}, x_{t}^{BG}, x_{t}^{EG}, x_{t}^{BL}, \\ x_{t}^{EL}, x_{t}^{GL}, x_{t}^{GB}, x_{t}^{GE}, b_{t}^{B}, b_{t}^{E} \geq 0 \end{array} \qquad \forall t \qquad (17)$$

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Image: A matrix

< ∃ >

1 Introduction

2 Mathematical Models

3 Results and Insights

GMP invests and controls Prosumer invests and controls

4 Conclusion

Seyyedreza Madani Investment In Smart Homes

Image: A matrix

< E.

1 Introduction

2 Mathematical Models

3 Results and Insights GMP invests and controls Prosumer invests and contro

4 Conclusion

Seyyedreza Madani Investment In Smart Homes HEC Montreal

Mathematical Models

Results and Insights

オロト オポト オモト オモト

-

Conclusion

NPV of scenarios when system is controlled by GMP

• Scenario #3 (having only EV) is the only profitable (+\$909.3) investment scheme for the distributor. (i = 0.0619, N = 15)

		2.15
Seyyedreza Madani	HEC M	ontreal
Investment In Smart Homes	3	32 / 46

Mathematical Models

Results and Insights

・ロン ・日 ・ ・ ヨン・

э

Conclusion

Peak-Loads when GMP controls the system

Peak-load shaving under different investment scenarios

Seyyedreza MadaniHEC MontrealInvestment In Smart Homes33 / 46

Results and Insights

< ∃ >

э

1 Introduction

2 Mathematical Models

Results and Insights GMP invests and controls Prosumer invests and controls

4 Conclusion

Seyyedreza Madani Investment In Smart Homes

Mathematical Models

Results and Insights

Conclusion

NPV of scenarios when system is controlled by PRO

V2H, selling back to grid is NOT allowed

• All scenarios under any rate structure yield negative NPVs.

	◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ○ ○
Seyyedreza Madani	HEC Montreal
Investment In Smart Homes	35 / 46

Mathematical Models

Results and Insights

Conclusion

NPV of scenarios when system is controlled by PRO

V2G, selling back to grid is allowed

- RTLMP and TOU&RTLMP rate structures make any investment scenario UNPROFITABLE.
- S1 (Battery) and S2 (Battery+PV) are always UNPROFITABLE.

Seyyedreza Madani Investment In Smart Homes Mathematical Models

Results and Insights

- The second sec

Conclusion

GMP's cost when system is controlled by PRO

V2G, selling back to grid is allowed

 Choosing Time-Of-Use-EV&Flat yields the least cost for GMP, regardless of the PRO's investment scenario.

Seyyedreza Madani	HEC Montreal
Investment In Smart Homes	37 / 46

Mathematical Models

Results and Insights

< < >> < <</>

Conclusion

Peak-Loads when system is controlled by PRO (selling is allowed)

Peak loads when system is controlled by PRO (Rate: Time-of-Use)

Peak loads when system is controlled by (Rate: Time-of-Use EV & flat)

Seyyedreza Madani Investment In Smart Homes HEC Montreal

Mathematical Models

Results and Insights ○○○○○○○● Conclusion

Flow from Grid when system is controlled by PRO (in 15-minutes time-steps)

rate is TOU-for-EV-and-FX and selling back to grid is allowed

Seyyedreza Madani

Investment In Smart Homes

Results and Insights

1 Introduction

- **2** Mathematical Models
- **3** Results and Insights

Seyyedreza Madani Investment In Smart Homes

40 / 46

Mathematical Models

Results and Insights

< < >> < <</>

Conclusion

Who should invest?

- The optimal investment strategy for the distributor's investment returns the NPV of \$909.32
- The optimal investment strategy for the prosumer's investment returns the NPV of up to \$11,728.92 (under proper tariff structure)
- A proper investment by the prosumer can save in both prosumer's and distributor's yearly costs.

Mathematical Models

Results and Insights

Conclusion

What investment scenario to choose?

- The one and only profitable investment scenario for the distributor is scenario #3 (EV)
- (Under proper tariff structure) the best investment scenarios for the prosumer are scenario #4 (EV+PV), scenario #3 (EV), and, scenario #5 (Battery+EV+PV), respectively.

Mathematical Models

Results and Insights

< < >> < <</>

Conclusion

What tariff to impose?

- If selling back to grid is NOT allowed (v2H), all investment scenarios are UNPROFITABLE
- investment made by the prosumer usually increases the distributor's costs, however, TOU-for-EV&FX cuts the yearly costs of both agents.

Results and Insights

< < >> < <</>

< ∃ >

Future works

- Developing a dynamic model with uncertain parameters
- Investigating collective investment scenarios (allowing local sharing)
- Considering effects of mass smart home technology adaption consequences on loads and prices

Int		luc	
oc	00	00	

Mathematical Models

Results and Insights

Conclusion 00000●0

References

[BTM21]	Bijan Bibak and Hatice Tekiner-MoħulkoÄğ. A comprehensive analysis of vehicle to grid (v2g) systems and scholarly literature on the application of such systems. <i>Renewable Energy Focus</i> , 36:1–20, 2021.
[LAAP ⁺ 21]	K. Logavani, A. Ambikapathy, G. Arun Prasad, Ahmad Faraz, and Himanshu singh. Smart Grid, V2G and Renewable Integration, pages 175–186. Springer Singapore, Singapore, 2021.
[LP20]	JosĂle-Lise Leheutre and Pierre-Olivier Pineau. Profitability of a vehicle-to-home system in different electricity tariff contexts. Rapport dâĂZĂl'tude de la Chaire de gestion du secteur de lâĂZĂl'nergie, 03, 2020.
[LTL ⁺ 20]	Xinzhou Li, Yitong Tan, Xinxin Liu, Qiangqiang Liao, Bo Sun, Guangyu Cao, Cheng Li, Xiu Yang, and Zhiqin Wang. A cost-benefit analysis of v2g electric vehicles supporting peak shaving in shanghai. <i>Electric Power Systems Research</i> , 179:106058, 2020.
[NZdRKS19]	Lance Noel, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. <i>The Economic and Business Challenges to V2G</i> , pages 91–116. Springer International Publishing, Cham, 2019.
[Ric13]	David B. Richardson. Encouraging vehicle-to-grid (v2g) participation through premium tariff rates. Journal of Power Sources, 243:219–224, 2013.
[vdV20]	MT van der Ven. Vehicle to grid in utrecht: Integrating electric vehicles into the energy system of utrecht. Master's thesis, 2020.

Seyyedreza Madani Investment In Smart Homes

Results and Insights

Conclusion

Seyyedreza Madani Investment In Smart Homes HEC Montreal

э.

イロト イヨト イヨト イヨト