

Paul Krugman (2020):

"Let's be clear: we knew or should have known, that something like COVID-19 was going to happen"

Energy Prices and COVID-immunity: The Case of Crude Oil and Natural Gas Prices in the US and Japan

Honorata Nyga-Łukaszewska* Kentaka Aruga**

*SGH Warsaw School of Economics, Al. Niepodległości 162, 02-554 Warsaw, Poland, hlukas@sgh.waw.pl **Graduate School of Humanities and Social Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan

> Aruga & Nyga-Łukaszewska (2020): IAEE Energy Forum, Are Oil and Gas Prices Immune to COVID-19?, Special issue 2020

Graph. DJ and Nikkei indexes between January 2020 and June 2020 Source: own elaboration

Are Oil and Gas Prices Immune to COVID-19?

BY KENTAKA ARUGA AND HONORATA NYGA-LUKASZEWSKA

Coronavirus and global society/economy	we have experienced so far.	Kentaka Aruga is with
COVID-19 pandemic has far reaching consequences	Firstly, because of the shale gas	the Graduate School
for our day-to-day activities. The spread of social	fever that had transformed the	of Humanities and
distancing which was introduced as a measure to	energy markets, both oil and	Social Sciences, Saitama,
fight the virus influenced our families, work and	gas, and secondly as this is,	Japan, Honorata
lifestyles. A survey carried our by Statista (2020)	one of those critical moments -	Nyga-Lukaszewska is
between 26 March and 1 April 2020 on a sample of	when the global oil demand in	with the SGH Warsaw
2900 respondents from China, Germany, the United	2020 is forecasted to contract	School of Economics,
Kingdom and the United States supports such impact.	for the first time since the	Warsaw, Poland. He
It turns out that the majority of respondents (ranging	global recession of 2009 (IEA,	may be reached at
en 270) to 600 king and the United States supports such impact.	2020). This formatic energy	hudra/Sikwith waw of
from 73% to 84%) staved at home after the soread of	2020). This dramatic energy	hlukas@sgh.waw.pl

Table. Unemployment rate in the US and Japan between January 2020 and June 2020 (in %) Source: own elaboration

Unemployment Rate	US	Japan
January 2020	3.6	2.4
February 2020	3.5	2.4
March 2020	4.4	2.5
April 2020	14.7	2.6
May 2020	13.3	2.9
June 2020	11.1	no data available

Table. Number of oil and gas rigs in operation in the US between December 2019 and June 2020. Source: own elaboration

Period	Number of Oil and Gas Rigs
December 2019	805
January 2020	790
February 2020	790
March 2020	728
April 2020	465
May 2020	301
June 2020	265

COVID-19 multidomensional impact: energy exporters/importers

Research question: How did the COVID-pandemic influence energy prices?

Research sample: US and Japan

Research horizon: from January 21, 2020, to June 2, 2020 (,,first pandemic wave'')

- oil prices–GDP nexus, oil price determinants: Barsky and Kilian (2001; 2004); Baumeister and Kilian (2016), Hamilton (2003; 2009; 2011), Kilian (2008, 2009), and Kilian and Cheolbeom (2009)
- Hamilton (2009) underlines that the real price of oil historically tends to be difficult to predict, and is governed by very different regimes at different points in time (COVID-19?)
- ➢ Gas prices/ oil-gas price relationship: Jadidzadeh and Serletis (2017), Nguyen and Okimoto (2017) and Atil et al. (2014)
- Few studies specifically tackling a pandemic's effects on energy markets: Kelley and Osterholm (2008), Aruga et al. (2020); research gap:
 - 1) oil and gas market
 - 2) pandemic-induced energy shocks
 - 3) energy exporting and energy importing nations
 - 4) daily data to achieves a relatively high-frequency (similar approach: Baumeister et al. 2014)

> ARDL - which became popular in studies assessing disease effects:

- ➢ Aruga et al. (2020) tested COVID-19's influence on Indian energy consumption,
- Laguna et al. (2017) investigated the influence of climatic variables on malaria outbreaks,
- > Upshur et al. (1999) examined the link between pneumonia and influenza cases.
- Auto-Regressive Distributive Lag (ARDL) approach proposed by Pesaran et al. (2001) on the number of US and Japanese COVID-19 cases and energy prices

$$\begin{split} & \succ Ln(Energy \ price) = Intercept + \beta_1 COVID19 + \Sigma_{i=2}^4 \beta_i Ln(Other \ energy)_i + \\ & \beta_5 Ln(Economic \ indicator) + \beta_6 Ln(Transportation \ index) + \\ & \beta_7 Ln(Power \ and \ gas \ index) + \beta_8 Ln(Unemployment \ index) + e_t \end{split}$$

Model built upon theoretical assumptions/with limitation due to lack of daily data, and is a modification of a similar model designed in Aruga and Nyga-Łukaszewska (2020)

Introduction	Literature	Methods and	Poculto	Conclusions
Introduction	review	data	Results	Conclusions

Table. Description of variables

Variable	Description	Source
WTI	WTI crude oil price (USD/BBL)	Markets Insider
Dubai	Platts Dubai Crude Oil (USD/BBL)	Tokyo Commodity Exchange
нн	Henry Hub natural gas price (USD/MMBtu)	Markets Insider
JKM	Platts Japan Korea Market LNG price (USD/MMBtu)	TradingView
COVID US	The cumulative COVID-19 cases in the US.	Our World in Data
COVID JP	The cumulative COVID-19 cases in Japan.	Our World in Data
DJI	Dow Jones industrial average index	Markets Insider
DJUSAU	Dow Jones U.S. Automobiles Index	ADVFN
DWCELC	Dow Jones U.S. Electricity Total Stock Market Index	ADVFN
NI225	Tokyo Stock Exchange Nikkei-225 Stock Average	Nikkei Inc.
JP transport	Tokyo Stock Exchange Transportation Equipment index	CEIC Data
JP Power	Tokyo Stock Exchange Electric Power & Gas index	CEIC Data
UE US	The cumulative US unemployment index	Google Trends
UE JP	The cumulative Japanese unemployment index	Google Trends

Introducti	on	Literat revie	ure w	Methods data	and	Results		Conclusions
Variables	Coet	WTI and COVID US	t-Stat	Variables		HH and COVID US	t-Stat	
Intercept	-1.0032		-0.341	Intercept	-1.2459		-1.366	
Ln(WTI)(-1)	0.4670	***	3.734	InHH-1)	0.5916	***	5.391	Table. ARDL estimat
Ln(WTI)(-2)	-0.0036		-0.027	LnHH(-2)	-0.0163		-0.128	Note: ***, **, and * der
Ln(WTI)(-3)	-0.0236		-0.182	LnHH(-3)	-0.1721		-1.665	ARDL stands for Aut
Ln(WTI)(-4)	0.2293	**	2.213	Ln(COVID US)	0.0233	**	2.243	Distributive Lag, coef
Ln(COVID US)	-0.0769	**	-2.338	Ln(WTI)	0.0454		1.541	Stat – t-statistic.
Ln(Dubai)	0.3456	**	2.431	Ln(Dubai)	-0.1041	**	-2.460	
Ln(HH)	0.4052		1.365	LNJKM	-0.1598	**	-2.128	
Ln(JKM)	0.4615	*	1.970	Ln(DJI)	0.2141		1.342	
Ln(DJI)	1.1158	*	1.984	Ln(DJUSAU)	0.0583		0.853	
Ln(DJUSAU)	-0.0008		-0.004	Ln(DWCELC)	-0.0157		-0.113	
Ln(DWCELC)	-1.5038	***	-3.250	Ln(UE US)	-0.0987	***	-3.002	
Ln(UE US)	0.2803	***	2.653					
		Dubai and COVID JI	5			JKM and COVID JP		
Variables	Coef	f.	t-Stat	Variables	С	oef.	t-Stat	
Intercept	-1.1475		-0.501	Intercept	3.6891	***	3.820	
Ln(Dubai)(-1)	0.6501	***	5.987	LNJKM(-1)	0.7716	***	12.137	
Ln(Dubai)(-2)	-0.2200	**	-2.044	Ln(COVID JP)	-0.0003		-0.025	
Ln(COVID JP)	0.0297		0.495	Ln(Dubai)	0.0406		0.878	
Ln(COVID JP)(-1)	0.0497		0.659	Ln(WTI)	0.0547	*	1.826	
Ln(COVID JP)(-2)	-0.1820	**	-2.433	Ln(HH)	0.0133		0.150	
Ln(COVID JP)(-3)	0.0926	*	1.695	Ln(NI225)	-0.3430		-1.553	
Ln(WTI)	0.2068	***	3.481	Ln(JP transport)	-0.0692		-0.291	
Ln(HH)	-0.1741		-0.876	LN(JP Power)	0.0722		0.445	
Ln(JKM)	0.1480		0.990	Ln(UE JP)	-0.0421		-1.389	
Ln(NI225)	-0.3443		-0.759					
Ln(JP transport)	1.2955	***	2.707					
LN(JP Power)	-0.7202	*	-1.879					
Ln(UE JP)	0.0200		0.232					

estimations. nd * denote significance 1 10% levels, respectively. for Auto-Regressive ag, coef. – coefficient, *t-*

Table. Bounds F-test for cointegration

Model	F-S	tat.
WTI vs. COVID US	5.7683	***
Dubai vs. COVID JP	10.7793	***
HH vs. COVID US	13.2265	***
JKM vs. COVID JP	5.5742	**

Note: *** and ** denote rejecting the null hypothesis of no cointegration (I(1)) at the 1% and 5% levels, respectively. The 1% and 5% lower bound (I(0)) critical values are 4.94 and 3.62 and those of the upper bound (I(1)) critical values are 5.58 and 4.16, respectively.

Table. Long-run coefficients estimation

Models	Variables	Coef.		t-Value
	Intercept	-3.0324		-0.3399
WIT VS. COVID US	Ln(COVID US)	-0.2324	**	-2.0161
	Intercept	-2.0137		-0.5068
Dubai vs. COVID JP		-0.0177		-0.3474
	Intercept	-2.0878		-1.3271
HH VS. COVID US	Ln(COVID US)	0.0391	**	2.1462
	Intercept	16.1497	***	5.8927
JKIVI VS. COVID JP	Ln(COVID JP)	-0.0014		-0.0247

Note: *** and ** denote significance at the 1% and 5% levels, respectively.

Both the crude oil and natural gas prices are cointegrated with the US and World COVID-19 cases

Only the US COVID-19 cases that have long-run impacts on the energy prices

Japan's oil and gas markets were not affected by the number of Japan's COVID-19 cases

Table. Conditional error correction ARDL estimations

Variables .	WTI and COVID US			Variables	HH and COVID US			
Variabies	Coef.		t-stat		Coef.		t-stat	
Intercept	-1.0032		-0.3408	Intercept	-1.2459		-1.3662	
Lp(\//TI)/_1)	-0 3308	***	-3 3038	Lp(HH)(_1)	-0 5968	***	-5 9691	
Δ(Ln(COVID US))	-0.0769	**	-2.3380	Δ(Ln(COVID US))	0.0233	**	2.2429	
Δ(LN(VV11))(-1)	-0.2022	Ŧ	-1./261	Δ(LN(HH)(-1))	0.1883	-1- -	1.7894	
Δ(Ln(WTI))(-2)	-0.2058	*	-1.9395	Δ(LN(HH)(-2))	0.1721		1.6646	
Δ(Ln(WTI))(-3)	-0.2293	**	-2.2128	Ln(WTI)	0.0454		1.5411	
Ln(Dubai)	0.3456	**	2.4310	Ln(Dubai)	-0.1041	**	-2.4602	
Ln(HH)	0.4052		1.3648	Ln(JKM)	-0.1598	**	-2.1281	
Ln(JKM)	0.4615	*	1.9699	Ln(DJI)	0.2141		1.3419	
Ln(DJI)	1.1158	*	1.9844	Ln(DJUSAU)	0.0583		0.8528	
Ln(DJUSAU)	-0.0008		-0.0037	Ln(DWCELC)	-0.0157		-0.1134	
Ln(DWCELC)	-1.5038	***	-3.2500	Ln(UE US)	-0.0987	***	-3.0015	
Ln(UE US)	0.2803	***	2.6532					

US model:

Note: ***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.

Model diagnostics:

- ➢ serial correlation and heteroskedasticity of the residuals OK 5% significance level
- CUSUM (cumulative sum) diagnostic test for parameter stability OK 5% significance level

- ➢ In the US, both crude oil and natural gas markets were affected by the COVID-19 pandemic, with both short-run and long-run relationships
- In the US, the cumulative number of COVID-19 cases had a negative impact on the crude oil price while it positively affected the natural gas price
- In Japan, only a short-run shock with a lag was apparent in the crude oil market and no evidence from that shock was visible in the natural gas market
- > Possible explanations for differences in the US and Japanese oil and gas market reactions to the pandemic maybe:
- > 1) the severity of the spread of the virus in the US as compared to Japan
 - ➤ US COVID-19 cases is more than a hundredfold greater than in Japan
 - → US severe stay-at-home policies vs. Japan commuting by public transportation even in a state of emergency
- > 2) US: a supplier and consumer of oil and gas vs. Japan: importer of oil and gas
- > Possible explanations for differences in diverse oil and gas markets reactions to the COVID-pandemic might be:
 - greater stability in gas prices being the consequence of preceding warm winters (exporters, have been less optimistic and more cautious about future investments as they had already expected lower gas sales)

- For energy exporters, the pandemic might be a trigger to diversify their economies and decrease reliance on energy exports
- ▹ For energy importers like Japan, it could be the case that little will change in that respect

> Study limitations:

- > literature strings on energy shocks and the pandemic's effects on energy markets, here limited to hydrocarbons
- ➢ high-frequency data, which became one of the important factors that delimited our empirical investigation

> Next research steps:

- \succ extending the period or range of the data sample (when available)
- \succ compare the results with other countries

Honorata Nyga-Łukaszewska – presenter (hlukas@sgh.waw.pl)

Kentaka Aruga (aruga@mail.saitama-u.ac.jp)

