Pathways towards a net-zero carbon emissions cement: a modelling-based approach integrating demand and supply

Kimon Keramidas1,2, Silvana Mima2, Adrien Bidaud2

IAEE online conference, 7 June 2021

1 European Commission, Joint Research Centre, Seville, Spain
2 Université de Grenoble-Alpes, Grenoble, France
Agenda

1. Introduction: why?
2. Methodology: how?
3. Results: what & when?
4. Recommendations & Conclusions
Materials and industry: challenges

World materials extraction
Source: Global Resources Outlook 2019, UNEP
International Resources Panel

Towards Sustainability scenario

World CO₂ emissions, 2018
Source: GECO 2020, JRC

- Transport: 23%
- Buildings & Agr: 9%
- Iron & Steel: 5.7%
- Industry: 17%
- Bioenergy: 6.3%
- Other Industry: 12.9%
- Waste & Fugitive: 2%
- Power: 34%
- LULUCF: 4%
Materials and industry in the context of climate change

- Increasingly ambitious climate change mitigation strategies
 - EU, USA: net-zero GHG in 2050
 - China: net-zero CO2 in 2060

Is it possible to reconcile increase in well-being for all (and associated materials demand increase) with aspirations of decarbonization of the world economy?

- We propose to represent both material demand and production in an energy model
 → Focus on cement

World GHG emissions, 1.5C scenario

Source: GECO 2020, JRC
Agenda

1. Introduction: why?
2. Methodology: how?
3. Results: what & when?
4. Recommendations & Conclusions
Projections of the evolution of the world energy system

- Long-term model (to 2050-2100)
- EU + 39 countries / regions (OECD, G20)
- Partial equilibrium, simulation

Output

- International energy prices & trade
- All energy sources and vectors
- All GHG emissions (linkage with specialist tools for non-energy)

Scenarios: policy context

New/updated work

- Enhancement of existing industry module
 - Physical quantities as driver to industry demand
 - Techno-economic options in industry mitigation

- Industry emissions: result of overall economy pathway (relative costs vs other sectors)

Policy context from JRC annual report GECO

- Reference scenario (current policies)
- 2°C climate change scenario
- 1.5°C climate change scenario

Cement Industry - POLES module: Methodology

Demand
- GDP, Population
- Sectoral indicators (buildings, infrastructure...)
- Country-level material demand
- Global or regional market

Production
- Supply cost
- Transport cost
- Country-level material production
- Expected new needs for capacities
- Installed capacities by process
- Average production cost
- Production by process
- Energy needs & mix
- Energy prices + carbon price

Complete energy system model POLES (incl. energy & climate policies)
Cement demand: Intensity of use & Specific uses

Annual demand per capita
General shape of growth-peak-decrease
- From industrialization to services
- Rich countries: apparent plateau at non-zero level
- Outliers

+ Uses within total,
with specific material consumption
1. Buildings: kg/m² of floor surface
2. Road infrastructure: kg/km² of paved network
3. Power: kg/MW of installed capacity (by technology)
 + kg/GWh of T&D network extension

1990-2018 for G20 countries
Cement production processes

Which processes?
- Vertical shaft: old technology
- Wet/Semi-wet/semi-dry rotary kiln: 2nd half of 20th century
- Dry-long rotary kiln: currently dominant
- Under development: pure electric kiln (indirect heating)

Process steps:
1. Electricity for raw material preparation and product grinding
2. Pre-calciner (up to 900 °C) → possibility to electrify
3. Kiln (up to 1400 °C) → thermal fuels + use of kiln waste heat in pre-heater

Source: Zhang et al, Journal of Cleaner Production, 2018
Agenda

1. Introduction: why?
2. Methodology: how?
3. Results: what & when?
4. Recommendations & Conclusions
Projections: Cement demand: By region and by use

- China demand plateaus, then global demand plateaus
- Growth of demand driven by other Asia and other non-OECD
- Global demand for buildings construction stabilizes
 → decrease in China, increase elsewhere non-OECD
 → urbanization: decrease in demand per floor space

Unlikely return to global high growth of 2000-2015
Projections: Cement demand: Changes in material uses (1)

- Different materials for buildings?
 1. Material substitution: wood, steel, glass
 2. Decrease clinker/cement ratio (current avg 80%) or cement content in concrete (current avg 20%)
 - As much as half less possible without loss in physical properties?
 - *...but dependent on availability of substitutes (fly ash, slags)*

- Case study: new construction by 2050 globally uses 50% less cement
- Cumulated 2020-50: -24% (-14,000 Mt)

…but to fully substitute with wood: timber plantation needs equivalent to 40% of EU surface area!

Construction standards globally: key driver in material efficiency

Source: Haut-Bois, France, 2020 (80% less concrete)
Projections: Cement demand: Changes in material uses (2)

- Indirect system impacts?
- Shift to low-carbon power system & electrification impacts cement demand
- Cum. 2020-50: +62% (+600 Mt)
- an additional 0.3 GtCO2...to avoid >180 GtCO2 with low-carbon power

Cement for Power

Coal: 250 t(concr)/MW
Wind: 420 t(concr)/MW
Source: IFPEN, 2019

Rebound effect for power generation decarbonization relatively small on overall cement demand
Projections: Cement production: Production capacities

- Recent past: major shift to most energy-efficient (and costlier) process (esp. China):
 New Suspension Pre-heater (NSP)
 and with Pre-calciner (NSP+)

Climate policies accelerate the penetration of electric process

Reference 1.5C Energy intensity

<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
<th>1.5C</th>
<th>Energy intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5000</td>
<td>5000</td>
<td>6.0</td>
</tr>
<tr>
<td>2010</td>
<td>4500</td>
<td>4500</td>
<td>5.5</td>
</tr>
<tr>
<td>2020</td>
<td>4000</td>
<td>4000</td>
<td>5.0</td>
</tr>
<tr>
<td>2030</td>
<td>3500</td>
<td>3500</td>
<td>4.5</td>
</tr>
<tr>
<td>2040</td>
<td>3000</td>
<td>3000</td>
<td>4.0</td>
</tr>
<tr>
<td>2050</td>
<td>2500</td>
<td>2500</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Projections: Cement production: Energy mix

- Historical predominance of coal
- Electricity in all processes for grinding

- 2C policies → fuel switch, electrification
- 1.5C policies → complete coal phase-out
- Synthetic fuels (H2, e-fuels): higher cost
 - *but impacts of biomass use: land use, biodiversity, air pollutants*

Reference

2C

1.5C

Emissions intensity of energy mix

Pre-calciner electrification retrofit and higher use of solid waste & biomass
Projections: Cement production: Carbon capture and storage (CCS)

- ~ 60% of emissions come from process (clinker production)
- Calcination + energy combustion in the same space → CO2-rich flue gas → possible leading role of cement industry in CCS
- Bioenergy + CCS: possibility to become net-negative
- ...but significant reliance on this single-solution

- 2020s: bring CCS concept from pilot to large-scale solution
- World: ~ 3000 cement plants → 60 plants CCS-ready in 2030 in 1.5C scenario

CCS necessary for significant emission reductions
Agenda

1. Introduction: why?
2. Methodology: how?
3. Results: what & when?
4. Recommendations & Conclusions
Prioritising actions in the next decade

Ranking of reduction options by 2030:

1. **Material efficiency**: revise construction codes in buildings (lower-clinker cement, substitution by wood/steel/glass)
2. **CCS**: start adding carbon capture to existing cement plants, start building associated storage infrastructure
3. **Electrify** part of existing process (pre-calcination)
4. **Biomass** and waste: extend use to replace coal

Considerations towards 2050:
- Gaseous fuels (NG, H2): minor role in 1.5C scenario
- Beware of trade-offs! Biomass use and sustainability limits
- R&D: investigate low-TRL options: CO2-curing (for prefabricated blocks), new binder formulas
- Rebound effect on materials demand for power generation: relatively small effect for overall cement demand
- Attainment of net-zero relies on speed of deployment of CCS
Conclusions

Future work

- Demand: explore different laws: strategies of development, urban forms, land use
- Trade: carbon leakage & carbon tax border adjustment
- Production: consider emergent technologies with low TRL
- End-of-life/recycling

Integrated demand/supply assessment

- Consider cement projections together with other materials modules:
 - Steel
 - Hydrogen
Thank you!

Kimon Keramidas
kimon.keramidas@ec.europa.eu

Thesis at I-MEP2
doctoral school of UGA