Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	0

Reliability standards and generation adequacy assessments for interconnected electricity systems

Nicolas Astier Marten Ovaere

Stanford University Ghent University & Yale University

IAEE Online Conference

Motivation

• 00000Background

OTheoretical framework

ONumerical application

OConclusion

OPower outages are one of the main sources of public and

political attention to the electricity sector

adequacy are often implemented

Source: ACER based on ENTSO-E's 2019 MAF.

Astier & Ovaere (Stanford & Ghent)

Motivation	Background	Theoretical framework	Numerical application	Conclusion
00000	00	00000	0000	0
Reliability	standards			

Generation adequacy assessments consist in determining how much electricity generation capacity should be installed to meet a **national reliability standard** (or whether a prospective generation fleet meets the standard).

If we define:

Loss of load expectation (LOLE) $\equiv \Pr[\mathsf{load} > \mathsf{available capacity}]$

then, a reliability standard is generally specified as:

LOLE $\leq \hat{\alpha}$

= 2.4/3/4/8 hours/year

Motivation
000 00Background
00Theoretical framework
00000Numerical application
0000Conclusion
0The microeconomic foundation for reliability standards has

been established for a given power system in isolation

Motivation OCO OCO The microeconomic foundation for reliability standards has

been established for a given power system in isolation

Motivation Solution Metrivation Solution Mumerical application Solution Solution

Motivation Solution The microeconomic foundation for reliability standards has been established for a given power system *in isolation*

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	0
Research o	uestion			

Does/can the enforcement of a national reliability standard still make sense in an interconnected power system?

In particular:

- Should we update/replace the national reliability standard?
- How should countries coordinate their adequacy assessments?

Motivation	Background	Theoretical framework	Numerical application	Conclusion
00000	00	00000	0000	0
Summary of	of results			

- We show theoretically that the social optimum may still be reached with national reliability standards under two conditions:
 - Optimal installed generation capacity for each country should be determined jointly, while considering the full power system;
 - OLLE calculations in generation adequacy assessments should fully internalize external adequacy benefits occurring throughout the full power system.
- We run a numerical application for Europe that suggests that regional coordination matters the most.

- Current approach: each country determines how much it will install, making assumptions on available imports from neighbors in times of scarcity.
- **Optimal approach:** determine jointly how much capacity to install in every sub-region, taking into account the full power system.

However national decision makers may be reluctant to transfer this responsibility to a supra-national level, because of the high economic, social, and political stakes.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	0•	00000	0000	0
Example of	f Europe			

- Following the adoption of the Clean Energy Package (Regulation (EU) 2019/943), a regional adequacy assessment has to be implemented by the European Network of Transmission System Operators by the end of 2023.
- This single assessment will determine the need for generation capacity investments in the different countries simultaneously, based on national LOLE targets provided by Member States.

 \Rightarrow Does/can such a hybrid approach remain consistent with social welfare maximization?

 \Rightarrow In the European context, can ACER's current proposal for generation adequacy assessments be improved?

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	0
Framework				

Demand:

 $D_i \equiv$ hourly electricity demand in country *i*.

 $V \equiv$ value of lost load (VoLL).

Assumptions: inelastic with a known distribution. Symmetric VoLL.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	•0000	0000	0
Framework				

Demand:

 $D_i \equiv$ hourly electricity demand in country *i*. $V \equiv$ value of lost load (VoLL).

Assumptions: inelastic with a known distribution. Symmetric VoLL.

Supply:

 $K_i \equiv$ total installed (dispatchable) generation capacity in country *i*. **Assumptions:** same peaking technology (*CONE*_{fixed} and *CONE*_{var}) in all countries.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	•0000	0000	0
Framework				

Demand:

 $D_i \equiv$ hourly electricity demand in country *i*. $V \equiv$ value of lost load (VoLL).

Assumptions: inelastic with a known distribution. Symmetric VoLL.

Supply:

 $K_i \equiv$ total installed (dispatchable) generation capacity in country *i*. **Assumptions:** same peaking technology (*CONE_{fixed}* and *CONE_{var}*) in all countries.

Interconnection:

 $L_{ij} \equiv$ interconnection capacity from country *i* to *j* (can vary across hours).

Assumption: NTC model (no power flow modeling), lossless exchanges.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	0000	0000	0
Autarky	reliability st	andard		

We define:

 $\alpha \equiv \frac{CONE_{fixed}}{VoLL - CONE_{var}}$

For a power system in autarky, welfare maximization/cost minimization is achieved when:

$$LOLE = \alpha$$

 \Rightarrow We refer to α as the autarky reliability standard.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	0
Lost-loa	d region			

Take away 1: Regional coordination

Take away 2: Need to internalize external adequacy benefits

Take away 3: Autarky reliability standard need not be removed

Application	to Mactorn	Europa: coopar	ioc	
000000	00	00000	●000	0
Motivation	Background	Theoretical framework	Numerical application	Conclusion

Application to vvestern Europe: scenarios

We compare 4 approaches to generation adequacy assessments in an interconnected power system:

	Neighbor contribution considered	Capacity determined jointly	Internalize external adeq. benefits
Autarky			
National	\checkmark		
Regional	\checkmark	\checkmark	
Optimal	\checkmark	\checkmark	\checkmark

Motivation 000000 Background OO Theoretical framewo

Numerical application

Data - Load (1/2)

Hourly load and NTC data for 2015-2018 is retrieved from ENTSO-E Transparency Platform.

Table: Summary statistics of hourly load [MW] in the 11 studied countries.

Country	Observations	Mean	P95	K* autarky	Maximum
Belgium	35,064	9,973	12,216	13,506	13,670
Denmark	35,057	3,740	4,997	5,638	5,819
France	35,040	54,040	75,280	92,433	94,492
Germany-Austria-Luxembourg	35,064	70,037	89,770	96,788	98,259
Great Britain	35,058	35,893	48,360	56,544	57,388
Ireland	34,899	3,132	4,077	4,798	4,901
Italy	35,064	33,096	45,077	53,212	55,157
Netherlands	35,064	12,557	16,686	18,692	19,272
Portugal	35,064	5,669	7,283	8,500	8,732
Spain	35,047	28,684	36,084	40,232	41,015
Switzerland	34,990	6,697	8,474	9,826	9,968

Note: Germany load is aggregated with Austria and Luxembourg. Some observations are missing or where ignored because they differed more than 50% from their day-ahead forecast.

Astier & Ovaere (Stanford & Ghent)

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	0
Data (2/2	2) - NTC			

Table: Median NTC [MW] for each border between the 11 studied countries.

To	BE	DK	FR	DE-AT-LU	GB	IE	IT	NL	PT	ES	СН
Belgium			800					1,300			
Denmark				885							
France	2,100			1,800	2,000		2,686			2,400	3,000
Germany-AT-LU		2,090	1,400				275	1,468			2,336
Great Britain			2,000			780		1,016			
Ireland					750						
Italy			995	100							1,810
Netherlands	1,200			1,468	1,016						
Portugal										2,900	
Spain			2,050						2,000		
Switzerland			1,200	5,200			2,961				

Note: missing observations were replaced by the median value of NTC for the corresponding interconnection.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	0
Results				

	Autarky	National	Regional	Optimal
Total costs (M€/year)	23,395	24,590	22,446	22,436
Total installed capacity (GW)	389.9	361.3	372.2	372.3
Average realized LOLE	0.1	15	3	2

Main take-aways:

- In the absence of regional coordination, national adequacy assessments can backfire (i.e. yield a worse outcome than just installing autarky capacities);
- In terms of getting total system costs right, regional coordination appears to be more important than correctly internalizing external adequacy benefits in national LOLE computations.

Motivation	Background	Theoretical framework	Numerical application	Conclusion
000000	00	00000	0000	•
Conclusion				

Research question: Does/can the enforcement of a national reliability standard still make sense in an interconnected power system?

- We show theoretically that the social optimum may still be reached with national reliability standards under two conditions:
 - Optimal installed generation capacity for each country should be determined jointly, while considering the full power system;
 - OLLE calculations in generation adequacy assessments should fully internalize external adequacy benefits occurring throughout the full power system.
- We run a numerical application for Europe that suggests that regional coordination matters the most.