COMMERCIAL COST-BENEFIT ANALYSIS OF DOGGER BANK WINDFARM

Petter Osmundsen *
Sindre Lorentzen *
Magne Emhjellen-Stendal **

* University of Stavanger
 * Petoro AS

Presentation for the The 2021 IAEE International Online Conference
June 9, 2021

https://www.researchgate.net/profile/Petter-Osmundsen
Research project funded by MPE

• The presentation is based on a report written jointly with Magne Emhjellen-Stendal (Petoro) and Sindre Lorentzen (UiS).

• The report is the second partial report on the R&D-project at Norce.UiS, «Learning processes from Norwegian based petroleum activity», funded by the Norwegian Ministry of Petroleum and Energy. Lorentzen and Osmundsen have received funding from the project.

• All analysis and conclusions are solely the responsibility of the authors.
Case analysis Dogger Bank

- The largest offshore windfarm project in the world
- Plans to generate 5% of UK electricity production
- An average strike price of GBP 40.96/MWh (in 2012 terms)
 - CfD, Contracts for Difference, UK government guarantees a fixed electricity price for the first 15 years
- Owned by Equinor (40%), SSE Renewables (40%) and ENI (20%)
- SSE is development operator and Equinor is operations operator
- Estimated Capex of 9 billion GBP
 - Investment started in 2020
- Planned capacity of 3.6 GW
- Depth 20-35 m, 130-190 km from shore
- 13 and possibly 14 MW GE wind turbine generators
 - Several hundreds
Project reference group

• Wind turbine industry researchers at the University of Århus
• Equinor
• Researchers at NHH, NMBU, NTNU and Norce
• Industry specialists
 • Supplier industry, utilities and oil industry
Project assumptions

• Discount rates
 • Fixed price period
 • 5.9% nominal
 • Uncertain price period
 • 8.5% nominal

• Project duration
 • 25 years

• Electricity price
 • The fixed CfD-price is GBP 45.83 for DBA and GBP 48.09, in 2020-terms
 • For 2038-2050 we use the average of the last three years in Denmark (38.96 GBP/MWh) and similar for the UK (71.86 GBP/MWh); and multiply by 0.9, an intermittency wind power discount
 • Denmark has a higher share of offshore wind, and UK is moving in this direction
 • Intermittent wind production over-weighted in periods of low electricity price (cannibalisation)

• Opex
 • 25% of capex, in NPV terms

• Decommissioning cost
 • 25% of Capex, nominal

• Capacity factor
 • 55%
Project economics calculation

- IRR total capital 5.6% nominal
 - 6% nominal before tax
- NPV -970
- Payback time 17 years
IRR sensitivity

<table>
<thead>
<tr>
<th>Factor</th>
<th>Negative scenario</th>
<th>Positive scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capex +- 15%</td>
<td>4.2%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Capacity factor +- 5</td>
<td>4.4%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Project duration +- 5</td>
<td>4.1%</td>
<td>6.5%</td>
</tr>
<tr>
<td>Price after 2037 +- 20%</td>
<td>4.6%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Opex +- 20%</td>
<td>5.1%</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

IRR sensitivity (baseline 5.6%)
Sensitivities, IRR change

IRR sensitivity

- Shorter/longer life scenario
- Capex + 15%
- Opex + 20%
- Price after 2037 + 20%
- Capacity factor + 5%
Sensitivities are not symmetric

• Cost overruns more likely than cost cuts
 • Average cost overrun 9.6 % for offshore wind
 • Benefits from going from 12MW to 13/14 MW turbine?

• Reduction in electricity price more likely than an increase?
 • UK has plans for 300% increase in offshore wind capacity by 2030 and an 1000% increase by 2050
 • Neighbouring countries increases capacity
 • Capacity increases faster than increased demand and enhanced system flexibility?
 • Higher demand contingent on lower electricity price?

• The everything-else-equal assumption not likely for increased project duration?
 • Contingent on increased investment and operating cost?