JUNE 9, 2021

INVESTIGATING DECOUPLING AND STRUCTURAL DYNAMICS VIA THE "HARMONEY" BIOPHYSICAL GROWTH MODEL

IAEE International Conference, June 7-9, 2021

CAREY W. KING, PH.D.

Research Scientist & Assistant Director, Energy Institute, The University of Texas at Austin

Motivations of research

- Improved macroeconomic theoretical frameworks
 Real dynamics
 - Real dynamics
 - Physical and monetary (including debt) variables
- Explain "debt" versus "energy" debates
 - #1: it is debt that has become unsustainable, not energy
 - #2: it is energy that has become constrained, not debt
 - Can we tell the difference? How?
 - "Answer": Make/Use models with both biophysical and debt feedbacks

Description of "HARMONEY" model

"Human And Resources with MONEY"

Results here are from a submitted manuscript using an updated v1.1 HARMONEY model

V1.1

King, Carey W., Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle, arXiv pre-print: <u>https://arxiv.org/abs/2106.02512</u>.

v1.0 in Ecological Economics:

King, Carey W., An Integrated Biophysical and Economic Modeling Framework for Long-Term Sustainability Analysis: the HARMONEY Model, Ecological Economics, 169, March 2020, 106464. <u>https://doi.org/10.1016/j.ecolecon.2019.106464</u>

Biophysical Models

- Population
- Natural Resources Capital (sometimes)

Economic Models

Population Capital Wages Employment Debt (sometimes)

Research Approach

Combine models: Link resource consumption

to debt, employment, and output

Important model feedbacks

- Death rates increase with low household resources consumption
- As resources are depleted, extraction capital requires more resource consumption to extract the marginal resource
- Capital (physical) investment requires physical resource consumption
 - Resources are embodied in capital

Economic (growth) model

Capital & Debt

• Each sector has its own physical capital (*K*), investment (*I*), and debt (*D*)

 $-\dot{K} = \frac{I}{P_g} - \delta K$ = gross physical investment – depreciation

 $-\dot{D} = (I - \delta P_g K) - \Pi$ = net investment – net profit

Gross Output

Physical output (X) of each sector is a Leontief (limited by capital, K, or labor, L, or resource input as fuel):

-Goods:
$$X = \frac{K_g C U_g}{v} = L_g \cdot a \quad \forall L_g = \frac{K_g C U_g}{a \cdot v}$$

- Extraction: $X = \delta_y y K_e C U_e = L_e \cdot a \quad \forall L_e = \frac{\delta_y y K_e C U_e}{a}$

- CU = capacity utilization
- a = labor productivity
- v = capital:output ratio (or capital productivity)

Gross Investment

- Investment is a (linear) function of profit share, Π/Y (or profit rate, π_r)
 - Keen, S (1995) J. of Post-Keynesian Economics; Keen (2013) J. of Econ. Behavior and Organization
 - Bovari et al. (2018) Ecological Economics
- $I = \kappa_0$ (depreciation) + κ_1 (profit) (results use $\kappa_0=1$, $\kappa_1=1.5$) = $\kappa_0(P_g \delta K) + \kappa_1 \Pi/Y$

where,

- Π = net profit = value added wages interest payments depreciation
- $P_{g}\delta K$ = value of capital depreciation

Wages per person (per Keen, 2013)

Wage (w) is a function of employment
 – Employed fraction = λ = Labor / population

$$\frac{\dot{w}}{w} = f(\lambda) + w_1 i + w_2 \frac{1}{\lambda} \frac{d\lambda}{dt}$$

$$- i = \text{inflation}$$

$$- w_1 = w_2 = 1, \text{ full labor}$$

$$\text{bargaining power}$$

Input-Output representation of									
money flows									
Goods Extraction			Consumption	Investment	ΔInventory	Total output			
	Goods	$P_g a_{gg} X_g$	$P_g a_{ge} X_e$	C _g	$I_e + I_g$	Δlnv_g	P _g X _g		
	Extraction	$P_e a_{eg} X_g$	P _e a _{ee} X _e	C _e		Δlnv _e	P _e X _e		
Value Added	Profit	Π_g	Пе						
	Wages	wLg	wL _e						
	Interest	rD_{g}	rD _e						
	Depreciation	$P_g \gamma K_g$	$P_g \gamma K_e$						
	Total output	P _g X _g	P _e X _e						

Input-Output representation of										
		упо	VV 3							
Goods Extractio		Extraction	Consumption	Investment	ΔInventory	Total output				
	Goods	$P_g a_{gg} X_g$	P _e a_X _e	C _g	$I_e + I_g$	ΔInv _g	P _g X _g			
	Extraction	$P_e a_{eg} X_g$	P _e a _{ee} X	C _e		Δlnv _e	P _e X _e			
ed	Profit	Π _g	Π _e		resource to operate v					
Add	Wages	wLg	wL_{e}	$a_{ee} = \frac{1}{tc}$	tal resource extraction					
Value ,	Interest	rD _g	rD _e							
	Depreciation	Ρ _g γK _g	$P_g \gamma K_e$							
	Total output	P _g X _g	P _e X _e							

Input-Output representation of									
	money	y flo	WS						
Goods Extraction			Consumption	Investment	ΔInventory	Total output			
	Goods	$P_{g}a_{gg}X_{g}$	P _e a_X _e	C _g	$I_e + I_g$	Δlnv_g	P _g X _g		
	Extraction	$P_e a_{eg} X_g$	P _e a _{ee} X	C _e		Δlnv _e	P _e X _e		
ed	Profit	Π_{g}	Π _e		to onerate	K			
Add	Wages	wLg	wL _e	$a_{ee} = \frac{1}{t_0}$	tion				
Value	Interest	rD _g	rD _e						
	Depreciation	$P_{g}\gammaK_{g}$	$P_{g}\gammaK_{e}$	η_{α}	eKeCUe	le_[resou	urce/time]		
	Total output	P _g X _g	P_eX_e	$u_{ee} = \frac{1}{\delta y}$	VK_eCU_e	jy [resou	urce/time]		

y = resources left in environment

This a_{ee} is depletion feedback from "net energy", or how much energy it takes to run the energy sector

	00003	^r g ^a gg∧g	- de Ae	C _g	le lg	ΔIIIV _g	۲ _g ۸ _g			
	Extraction	$P_e a_{eg} X_g$	eaeeX	C _e		Δlnv _e	$P_e X_e$			
ed	Profit	Π_{g}	Π _e	resource to operate K						
Add	Wages	wLg	wL _e	$a_{ee} = 1000000000000000000000000000000000000$						
lue	Interest	rD _g	rD _e		Fuel to operate capital					
Va	Depreciation	Ρ _g γK _g	Ρ _g γK _e	η	eKeCUe	le_ [reso	urce/time			
	Total output	P _g X _g	P _e X _e	$a_{ee} = \frac{1}{\delta y}$	VK_eCU_e	ireso	urce/time			
						left in environme	nt			

Solving for prices

Prices (*P_i*) are a markup (*µ_i*) on the costs
 (*c_i*) of production

$$P_i = (1 + \mu_i)c_i$$

• Prices change with a time delay, T:

$$\dot{P}_i = \frac{1}{\tau} \left((1 + \mu_i) c_i - P_i \right)$$

Solving for prices: "full cost"

- Costs (c_i , \$/unit) are
 - Depreciation
 - Interest payments on debt
 - Labor
 - Intermediate purchases of goods and resources

$$c_g = P_g a_{gg} + P_e a_{eg} + (wL_g + r_L D_g + \delta P_g K_g)/X_g$$

$$c_e = P_g a_{ge} + P_e a_{ee} + (wL_e + r_L D_e + \delta P_g K_e)/X_e$$

Solving for prices: "marginal cost"

- Costs (c_i , \$/unit) are
 - Depreciation
 - Interest payments on debt
 - Labor
 - Intermediate purchases of goods and resources

$$c_g = P_g a_{gg} + P_e a_{eg} + (wL_g + r_L P_g + \delta r_L X_g)/X_g$$

$$c_e = P_g a_{ge} + P_e a_{ee} + (wL_e + r_L P_e + \delta r_L X_e)/X_e$$

Simulation results

Note: model is not calibrated to any region in the real world

Note the causal effects assumed in the model ...

- 1st: sectors invest in new capital
- 2nd: calculate labor
- 3rd: determine if labor or capital is limiting output
 - Calculate sector output [gross (X) and net (Y)]
 - Calculate all other macroeconomic factors (wages, profit, etc.)
- 4^{th} : household consumption (C) is "left over" output after investment (C = Y I Δ Inv)
 - Δ Inv: change in value of inventories

Points to keep in mind

- I vary two things to compare results
 - 1) The definition of cost in solving prices (full vs. marginal)
 - 2) If there is an (exogenous) increase in efficiency of capital operation (fuel input)
- The model grows from an equilibrium of a "small economy"
 - Resource extraction = $\delta_y y K_e CU_e$
 - Small economy: extraction parameter, δ_v , is set low
 - Growing economy: extraction parameter, δ_y , is increased (using 3rd order time delay)
 - Makes it possible to extract more resources with existing capital, which enables profits for net investment and growth

Highlights of simulation of model: Resources, capital, and investment

Highlights of simulation of model: Resources, net output, and population

Metabolic View of the Economy

- The gray area represents an economy in a state of "relative decoupling"
 - Both energy consumption and GDP are increasing
 - GDP is increasing faster than energy consumption

- More "decoupling" occurs due to
 - Increasing resource consumption efficiency of capital (e.g., fuel efficiency)

- More "decoupling" occurs due to
 - Increasing resource consumption efficiency of capital (e.g., fuel efficiency)
 - Using marginal rather than full costs

Marginal costs pricing \rightarrow higher debt ratios \rightarrow more "decoupling"

The model also mimics an interesting "structural" trend of the U.S.

Input-Output representation of										
money flows										
Goods Extraction			Consumption	Investment	ΔInventory	Total output				
	Goods	$P_g a_{gg} X_g$	$P_{g}a_{ge}X_{e}$	C _g	$I_e + I_g$	Δlnv_g	P _g X _g			
	Extraction	$P_e a_{eg} X_g$	$P_e a_{ee} X_e$	C _e		Δlnv _e	P _e X _e			
ea	Profit	П _g	Π _e							
Value Add	Wages	wLg	wL _e							
	Interest	rD _g	rD _e							
	Depreciation	Ρ _g γK _g	$P_g \gamma K_e$							
	Total output	P _g X _g	P _e X _e							

TEXAS The University of Texas at Austin Energy Institute

The model also mimics an interesting "structural" trend of the U.S.

(tracking money flows in input-output tables)

WHAT STARTS HERE CHANGES THE WORLD

The model also mimics an interesting "structural" trend of the U.S.

(tracking money flows in input-output tables)

U.S. Data

King (2016) Biophy. Econ. & Res. Quality 37

The model also mimics an interesting "structural" trend of the U.S.

(tracking money flows in input-output tables)

Marginal Cost Pricing Results

King (2016) Biophy. Econ. & Res. Quality 38

Low point in Mutual Constraint and peak in Conditional Entropy occur for similar resource-consumption reasons

U.S. data: King (2016) Biophy. Econ. & Res. Quality

ORLD

Marginal Cost Pricing Results

35% Intermediate purchases by Food & Natural Resource Sectors 30% GDP (%) Food & 25% Enerav Spending divided by ్ధిం 20% 15% Enno 10% 5% 0% 1925 1985 2005 945 1965

U.S. 2002: Cheapest (energy + food costs)/GDP Marginal cost model, T=160: lowest Y_{extract}/Y_{total} 0.14 2.6 2.4 0.5 0.12 2.2 Constraint (model) 0.1 0.4 2 extract / Y total 0.08 0.3 0.06 0.2 Mutual 0.04 0.1 0.02 0.8 Marginal cost pricing 0 0 0.6 50 200 250 300 50 200 250 300 Ω 100 150 Ω 100 150 Years Model Time

Mutual Constraint 40

King The Economic Superorganism, Chapter 2.

Takeaways: The HARMONEY model ...

- ... consistently tracks physical and economic flows
- ... serves as a base model to add components (e.g., government, renewable energy sector, climate/atmosphere)
- ... explains some (important) coincident trends in energy and money distribution (e.g., metabolic view of economy, I-O structure, wage share, debt)
- ... shows how economic decisions (e.g., rate of investment) relate to physical resources and population

Carey W. King, Ph.D.

Research Scientist & Assistant Director | Energy Institute McCombs School of Business Jackson School of Geosciences

careyking@mail.utexas.edu

careyking.com | @CareyWKing

King, Carey W., Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle, arXiv pre-print: <u>https://arxiv.org/abs/2106.02512</u> THE ECONOMIC SUPERORGANISM

BEYOND THE COMPETING NARRATIVES ON ENERGY, GROWTH, AND POLICY

CAREY W. KING

Deringer

The University of Texas at Austin Energy Institute

energy.utexas.edu

Tension between Wages and Profits at constant resources extraction

Highlights of simulation of model: wage share, profit share, debt ratio

TEXAS The University of Texas at Austin Energy Institute

When economy stops growing, wage vs. profit tradeoff becomes more tenuous

TEXAS

@ constant GDP and resources consumption: Full bargaining: wage share \uparrow max., profit share $\downarrow 0$ No bargaining: wage share $\downarrow 0$, profit share \uparrow max.

VS.

Does the theoretical model match anything interesting in the energy & economic data?

WHAT STARTS HERE CHANGES THE WORLD

Model (full cost, full wage bargaining power)

WHAT STARTS HERE CHANGES THE WORLD

U.S. Data (1929-2016)

Model

(full cost, loss of wage bargaining power from T=60 to T=160)

WHAT STARTS HERE CHANGES THE WORLD

Model

(full cost, loss of wage bargaining Power from T=60 to T=160)

U.S. Data (1929-2016)

WHAT STARTS HERE CHANGES THE WORLD

Model

(full cost, loss of wage bargaining Power from T=60 to T=160)

U.S. Data (1929-2016)

When resources consumption peaks (total, or per capita) ...

... is there a forced "choice" or tradeoff between nonzero profits and full wage bargaining power?

