

LEVELIZED FULL SYSTEM COSTS OF ELECTICITY

9 Jun 2021 – IAEE Online – Robert Idel

Definition of LCOE

- Levelized cost of electricity represents the average costs per unit of generated electricity.
- (Simplified) Calculation: Total lifetime costs divided by total lifetime generation.

LCOEs of current technologies¹

Technology	LCOE [USD/MWh]
Biomass	94
Coal (USC)	76
Natural Gas CC	38
Nuclear	82
Geothermal	37
Hydroelectric	53
Solar	36
Wind, onshore	40
Wind, offshore	122

Fundamental misunderstanding of LCOEs

- "Solar is the cheapest source of electricity."
- "The reason there is no transition to renewables are subsidies for dispatchable generation."
- LCOE are the costs to *generate* electricity.
- What should be relevant are the costs to *provide sufficient electricity to meet demand*.
- For dispatchable sources, LCOE are a good measure to compare the cost of providing the market.
- For intermittent sources, they are highly flawed.²

System LCOE according to Uerckerdt et al (2013)

- Add balancing costs, grid costs, and profile costs.

- Profile costs consist of
 - Backup costs
 - Full-load hour reduction
 - Overproduction costs

System LCOE in Europe for Wind generation

Levelized Full System Costs of Electricity (LFSCOE)

- Calculate minimal cost to supply the market if only one technology + storage can be used to supply the market.
- Approach to get the Levelized Full System Costs of Electricity:
 - 1. For each source, find cost minimizing investment in generation capacity and storage, and generation per hour, conditional on supplying the market in a certain year, i.e. for dispatchable sources:

$$\begin{split} \min_{\substack{gp,bp,gen \in \mathbb{R}^{H-1}_{*}, x}} gp \cdot cc_{y} + bp \cdot cc_{storage} + t_{inv} \cdot \sum_{i=0}^{H-1} mc_{y} \cdot gen[i] \\ s.t. \quad 0 \leq x[i] \leq x[i-1] + gen[i-1] - D_{i-1}, \quad (D.1) \\ -bp \leq x[i] - x[i-1] \leq bp, \quad (S.1) \\ storage_security \leq x[i] \leq bp \cdot storage_factor, \quad (S.2) \\ x[0] \leq bp \cdot storage_factor \cdot storage_start, \quad (S.3) \\ x[0] \leq x[H], \quad (S.4) \\ gen[i] \leq maxcap_{y} \cdot gp, \quad (G.1) \\ -rampdown_{y} \leq \frac{gen[i+1] - gen[i]}{gen[i]} \leq rampup_{y}. \quad (G.2) \end{split}$$

- 2. For intermittent sources, we drop (G.1) and (G.2), replace gen[i] in (D.1) by $capfactor_{i-1} \cdot gp$ and drop the last term in the objective function.
- 3. Determine average costs (over 20 years) per MWh of demand.¹

¹Though 20 years are usually taken to evaluate intermittent sources, all technologies last longer than 20 years. ²The actual required backup for such a system will be very controversial.

Assumptions on cost, market, and technology

Technology	Fixed Costs [USD/kWh]	Variable Costs [USD/MWh]	Ramp-up/down [% per hour]	
Biomass	6,600	28	150%/50%	
Coal (USC)	4,500	25	150%/50%	
Natural Gas CC	1,400	18	150%/50%	
Nuclear	8,700	26	150%/50%	
Wind	2,000	0	-	
Solar	1,300	0	-	
Storage	1,400	0	-	

- Dispatchable sources of generation may also use storage, have limits in the hourly output change, and work at maximal 90% of their capacity.
- Intermittent sources can perfectly forecast the hourly capacity factor and can dispose electricity.
- The storage factor is fixed at 3 MWh/MW.
- Intermittent sources require a minimal storage level of 1GWh.²
- Markets: Germany and Texas/ERCOT.

DATA

center for

Rice University's Baker Institute for Public Policy

Hourly capacity factors for wind and solar in ERCOT/Texas (2013-2019) and Germany (2011-2017)

Results

Key observations

center for

Rice University's Baker Institute for Public Policy

- LFSCOE for Wind and Solar much higher than for dispatchable sources.
- Very high LFSCOE for Solar in Germany (due to low capacity factor and "negative" correlation with demand).
- LFSCOE for dispatchable sources higher in Texas than in Germany (due to seasonal variance in demand).

Counterfactuals

- Include storage losses.
- What if storage costs drop significantly?
- LFSCOE-95: Only require to supply 95% of the demand.
- Installed capacity would have ensured sufficient supply during the Texas Snow Storm 2021.

LFSCOE with Market Data from ERCOT/Texas

Storage losses

Three types of storage losses

Ignore transmission or distribution losses.1

2. Discharging loss

3. Storage

LFSCOE with charging losses (Germany)

LFSCOE with discharging losses (Germany) 2000 2000 Solar W+S --- NGCC Solar W+S --- NGCC 1750 1750 ----- Nuclear Wind Nuclear Wind 1500 1500 LFSCOE in USD/MWh Å LFSCOE in USD/M 1250 1250 Discharging losses are twice as costly 1000 1000 as charging losses. 750 750 500 500 250 250 0 30% 20% 10% 0% 17% 13% 10% 5% 0% 40% 20% Charging loss in % Discharging loss in %

page 7

LFSCOE with decreasing storage costs (Germany)

LFSCOE with decreasing storage costs (Texas)

LFSCOE-95

- Assume that only 95% of the demand has to be supplied by this technology + storage.
- (Up to) 5% of the demand are covered by a "flexible low-cost technology".

LFSCOE-95 (Germany)

LFSCOE-95 (Texas)

Technology	LFSCOE [USD/MWh]	LFSCOE-95 [USD/MWh]		Technology	LFSCOE [USD/MWh]	LFSCOE-95 [USD/MWh]
Biomass	104	90		Biomass	117	95
Coal (USC)	78	67	sources in different markets.	Coal (USC)	90	72
Natural Gas CC	35	31	•	Natural Gas CC	40	32
Nuclear	106	90		Nuclear	122	96
Wind	1548	849	\mathbf{i}	Wind	413	177
Solar	504	279		Solar	291	131
Wind & Solar	454	220		Wind & Solar	225	91
		↑				

~50% reduction

