Endogenous Technological Change in Power Market Models IAEE Conference 2021

Jacqueline Adelowo

Valeriya Azarova Mathias Mier

ifo Institute

June 9th, 2021

Motivation ●0	Literature 0	The Project 0	EUREGEN Model o	Numerical Strategy	Results 000	Next Steps & Conclusion	References O
Sneak	Peak	ζ					

- 1. We extend a numerical model of the European power market by learning-by-doing of renewables
- 2. We develop a novel framework extension for experience depreciation in learning-by-doing (forgetting)
- \Rightarrow Qualitative model behaviour with provisional learning calibration

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
0.	0	0	0	000	000	00	0

Motivation

Power market models

- Important tool to evaluate system impacts of climate and energy policies
- Paris Agreement, European Green Deal
- Scenario evaluation \Rightarrow system outcomes

Important driver: cost developments of generation technologies

Exogenous technological change

- Purely time-dependent unit costs reductions
- Unrealistic regional bang-bang solutions

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	•	0	0	000	000	00	0

Literature

Learning curves, organisational forgetting, spillovers

Wright (1936), McDonald and Schrattenholzer (2001), Rubin et al. (2015), Argote and Epple (1990), Benkard (2000), Nemet (2012)

Endogenous learning in numerical power market models Messner (1997), <u>Kypreos et al. (2000)</u>, Barreto and Kypreos (2004), Miketa and Schrattenholzer (2004), Heuberger et al. (2017)

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	•	0	000	000	00	0

The Project

Endogenous technological change (ETC)

We extend the numerical EUREGEN Power Market Model

- by regional LBD
- for solar, wind onshore, wind offshore

... perfect recall (base case ETC)

 \Rightarrow Application of existing LBD framework

... forgetting

 \Rightarrow Novel framework extension by experience depreciation in LBD

We also explore spillover effects, different learning specifications, and different numerical specifications (not covered today)

IAEE 2021

The EUREGEN European Power Market Model

Partial equilibrium model with resolution of up to 28 countries:

- 16 generation technologies
- Storage and transmission
- Emissions and carbon price
- Hourly market clearing

Intertemporal optimisation:

- Investment cost
- Fixed cost and dispatch cost
- Policy cost (subsidies/ taxes for capacity and generation)

ifo Institute

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	0	0	000	000	00	0

Numerical Strategy

Unit cost learning curve as starting point:

$$c_{i,r,t} = c_{i,r}^0 \times QS_{i,r,t}^{b_{i,r}}$$

- *i*, *r*, *t* technology, region, period
- c unit cost
- c⁰ initial unit cost
- *QS* experience stock
- *b* negative learning elasticity

 \Rightarrow Linearise **non-linear** learning curve as **Mixed-Integer-Program** \Rightarrow Get capacity expansion *IX* and associated **capital expenditure** *CAPEX* **per period**

Numerical Strategy (cont.)

Two-step linearisation procedure (Kypreos et al., 2000)

- 1. Integrate unit cost curve over experience stock \Rightarrow cumulative cost curve
- 2. Variable length segmentation of cumulative cost curve into piece-wise linear line segments

Forgetting-by-not-doing

Introduce a depreciation factor δ :

$$QS_{i,r,t} = (1-\delta) \times QS_{i,r,t-1} + IX_{i,r,t}$$

Naive implementation \Rightarrow Negative bias of CAPEX and IX

IAEE 2021

ifo Institute

9 ∢ □ → 📑

Forgetting-by-not-doing (cont.)

Calculate the inherited (legacy) part of the experience stock while accounting for depreciation

$$QS_{i,r,t}^{LEG} = (1-\delta) \times QS_{i,r,t-1}$$

 \Rightarrow Add unbiased CAPEX to objective function

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	0	0	000	000	00	0

Default implementation

Model specification

- Number of line segments: 5
- Regional learning (12 regions)

Provisional calibration

- Learning elasticity: 9% for solar, wind onshore, offshore
- (Forgetting rate: 3% p.a.)

Results: Exogenous TC vs. Base Case ETC

- Gas-CCS to compensate for less renewables expansion
- Earlier investments
- Partial reduction of bang-bangs
- Heterogenous effects and interdependencies

Results: Base Case ETC vs. Forgetting

Aggregate level:

- Increased expansion to compensate forgetting
 - \Rightarrow Off-setting effect

Regional level:

 Condensed/smoothed expansion waves

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	0	0	000	000	00	0

General insights

Model outcomes

- High sensitivity to learning parametres
- Relevant impact of line segmentation

Computational feasibility

- Strong increase in computational complexity
 ⇒ solving time and feasibility
- Computional limits to segmentation resolution

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	0	o	000	000	• 0	O
Next	Steps						

- Fine-tune calibration, sensitivity (forgetting rates, CO2 prices)
- Optimal number of line segments
- Learning technologies
- Learning-by-searching, spillovers

Challenges

- Non-linear implementations (feasibility, local optima)
- Adequate learning specification (technologies, mechanisms)
- Data availability

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	0	o		000	0•	O
Concl	usion						

- Constant trade-off: complexity vs. feasibility of ETC specification
- ETC leads to more realistic expansion behaviour ⇒ policy design!
- Regional perspective behind aggregate values is relevant
- Careful calibration is crucial
- Potential for more sophisticated learning features
 ⇒ data availability

Motivation	Literature	The Project	EUREGEN Model	Numerical Strategy	Results	Next Steps & Conclusion	References
00	0	0	0	000	000	00	0

References

Argote, Linda and Dennis Epple (1990). "Learning curves in manufacturing". In: <u>Science</u> 247.4945, pp. 920–924.

Barreto, Leonardo and Socrates Kypreos (2004). "Endogenizing R&D and market experience in the "bottom-up" energy-systems ERIS model". In: Technovation 24.8, pp. 615–629.

Benkard, C Lanier (2000). "Learning and forgetting: The dynamics of aircraft production". In: American Economic Review 90.4, pp. 1034–105

Blanford, Geoffrey J. and Christoph Weissbart (2019). "A Framework for Modeling the Dynamics of Power Markets – The EU-REGEN Model". In: ifo Institute, Munich.

Heuberger, Clara F et al. (2017). "Power capacity

expansion planning considering endogenous technology cost learning". In: <u>Applied Energy</u> 20 pp. 831–845.

Kypreos, Socrates et al. (2000). "ERIS: A model prototype with endogenous technological change". In: International Journal of Global Energy Issues 14.1/2/3/4, pp. 347-397.

McDonald, Alan and Leo Schrattenholzer (2001).

"Learning rates for energy technologies". In: Energy policy 29.4, pp. 255-261.

IAEE 2021

Jacqueline Adelowo

Messner, Sabine (1997). "Endogenized technological learning in an energy systems model". In: Journal of Evolutionary Economics 7.3, pp. 291–313. DOI: 10.1007/s001910050045.

Miketa, Asami and Leo Schrattenholzer (2004).

"Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results". In: <u>Energy Policy</u> 32.15, pp. 1679–1692.

Nemet, Gregory F. (2012). "Subsidies for New Technologies and Knowledge Spillovers from Learning by Doing". In: Journal of Policy Analysis and Management pp. 601–622.

Rubin, Edward S. et al. (2015). "A review of learning rates for electricity supply technologies". In: <u>Energy Policy</u> 86, pp. 198–218.

Weissbart, Christoph (2020). "Decarbonization of power markets under stability and fairness: Do they influence efficiency?" In: <u>Energy Economics</u> 85, p. 104408.

Wright, Theodore P (1936). "Factors affecting the cost of airplanes". In: Journal of the aeronautical sciences 3.4, pp. 122–128.

ifo Institute

17 < 🗆 🕨 📑