

Oxygen from electrolysis for medical use: an economically feasible route

Gaetano Squadrito, Agatino Nicita, Gaetano Maggio.

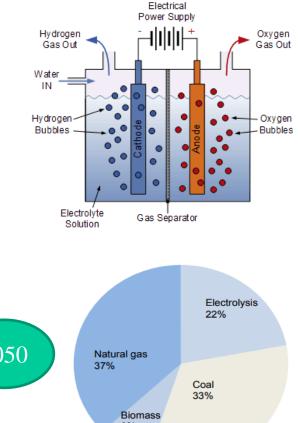
Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (CNR-ITAE)

ENERGY, COVID, AND CLIMATE CHANGE

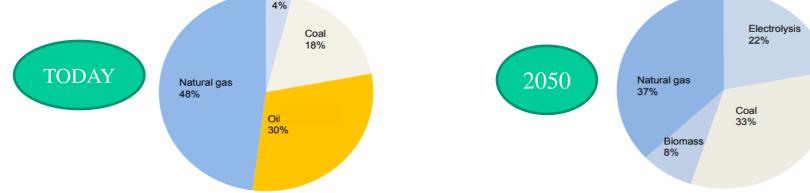
Summary		
Introduction	(Slides 3-6)	
Previous supporting works	(Slides 7-9)	
The case study approach	(Slides 10-12)	
Results	(Slides 13-15)	
Future work and conclusions	(Slides 16-18)	

Acknowledgement

This work was carried out exclusively by internal funds of the VISTE research group of CNR-ITAE. VISTE is the research group dedicated to the study of socio-economic impacts of energy technologies, and it is partner of NEWCOMERS project (funded by EU-H2020).

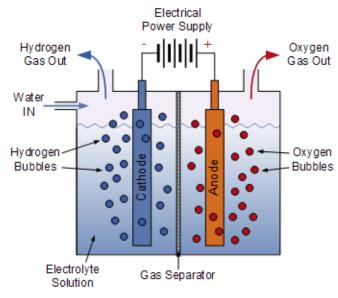


For more information: www.itae.cnr.it www.newcomersh2020.eu


GREEN HYDROGEN PRODUCTION

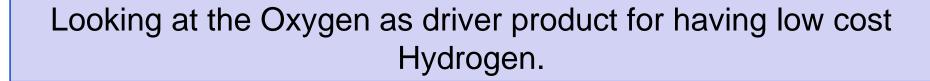
Water electrolysis utilizing electricity derived from renewable sources (wind, solar, geothermal, hydro) is the most environmentally friendly approach for **hydrogen** production.

Electrolysis


Current Worldwide H₂ Production: 50 Mt/year.

Electrolysis currently account for only 4% of the hydrogen production, but a large expansion is expected in the next years. Main issue: The cost of produced Hydrogen

Changing the approach


In water electrolysis for each kg of produced **hydrogen**, we have 8kg of **oxygen**. Usually, oxygen is not considered

and released in the atmosphere. WHY?

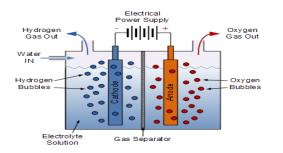
Buscar el levante por el poniente

"I should not proceed by land to the East, as is customary, but by a Westerly route, in which direction we have hitherto no certain evidence that any one has gone."

Cristoforo Colombo diary, 3 August 1492.

Indeed, Oxygen produced by electrolysis can be placed on the market

<u>Food and drink industry</u> Packaging with protective atmosphere. Fish farm tub oxygenation. Disinfection and sterilization (ozone).	<u>Glass production and processing</u> Increasing combustion efficiency and reducing NO_x emissions.	
<u>Chemical industry</u> Raw materials oxidation, e.g. production	<u>Metal production and processing</u> Air mixture over-oxygenation to increase	
of nitric acid, ethylene oxide, propylene oxide, vinyl chloride monomer and other bulk chemicals. Increasing the capacity and efficiency of waste incinerators. <u>Oil industry</u>	the combustion temperatures. Increasing metal temperatures in electric arc furnaces for steel making. Oxy-fuel cutting, welding and heating of metals. Paper industry	The global Oxygen market size was about USD 43,5 Billion in 2019 and will expected to reach USD 50 Billion
Cracking catalysts regeneration. Increasing efficiency of sulphur removing.	Increasing quality/efficiency of bleaching process.	by 2025. Font – marketstudy report
<u>Waste treatment</u> Air enrichment for firing (lower	<u>Medical applications</u> Reviving gas mixtures for anaesthesia	
pollution).Pyrolysis and gasification processes.Waste water purification.	and emergency. Long-term treatments of patients with respiratory failure.	



Oxygen market is already existing and well organised for both production and distribution.

Previous work (1)

200 kW photovoltaic plant

180 kW electrolyser

Compression and storage

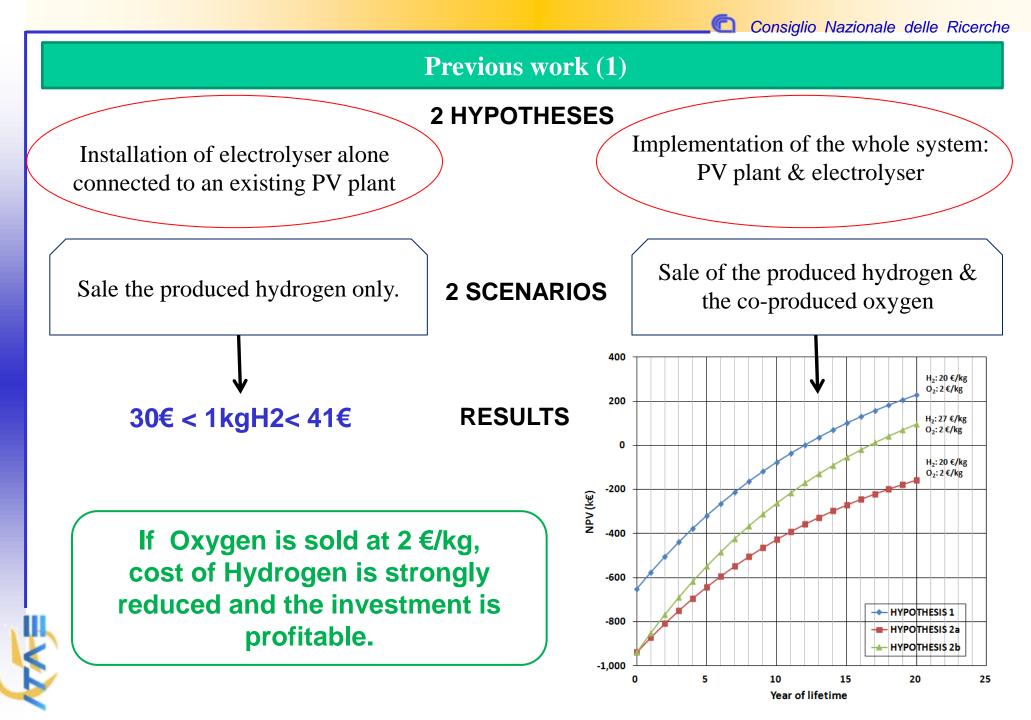
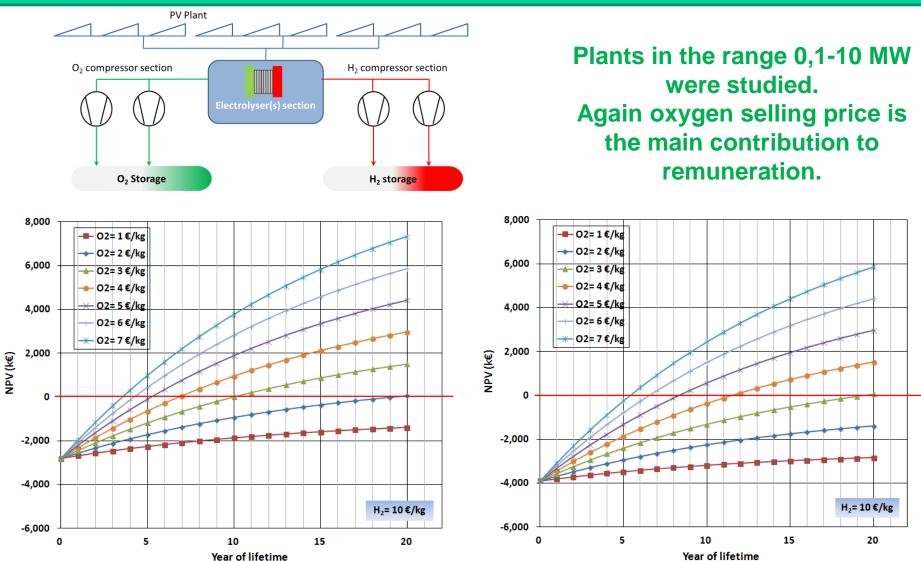
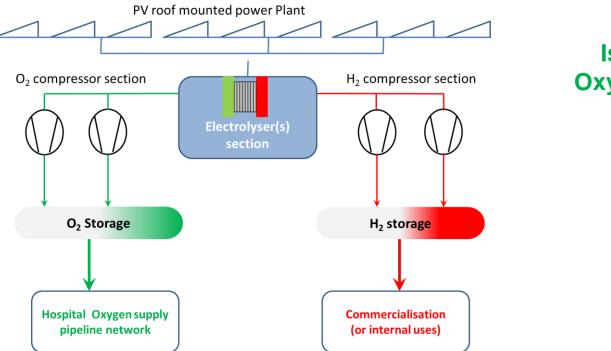

Trapani	Palermo Agrigento Reference Region Low Region Construction Region Low Region Region Low Region Region Low Region Regio
*	"3 Ragusa

Table 1: Plant characteristics			
Parameter	Value	Note	
PV plant peak power	200 kW		
Total power generation by PV plant	260,000 kWh/y	PVGIS estimate ^a	
Efficiency of electrolyser	70%	Stolten & Emonts (2016)	
Plant lifetime	20 years		
Stack lifetime	83,000 h	Koj et al. (2015)	
Average daily operation	6 h/day		
Hydrogen output	12.7 kg/day		

^a From http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php, for a building-integrated plant located in Messina.



"Green Hydrogen as Feedstock: Financial Analysis of a Photovoltaic-Powered Electrolysis Plant", by A. Nicita, G. Maggio, A.P.F. Andaloro and G. Squadrito; Int. J Hydrogen Energy 45, 2020, 11395-11408


Previous work (2)

"A size-dependent financial evaluation of green hydrogen-oxygen coproduction", by G. Squadrito, A. Nicita, G. Maggio; Renewable Energy 163 (2021) 2165-2177

THE CASE STUDY

Question Is RES based distributed Oxygen production for health purposes sustainable?

Yearly oxygen consumption $[Nm^{3}/y] = 8.3$ (No. Hospital beds)^{1.814}

Electrolyser size [MW] = (Yearly oxygen consumption [Nm³/y]) / 160,570 [Nm³/y MW])

160,570 [Nm³/MW] is the estimated oxygen production in the selected location for 6h/day of electrolyser work with a PV field of 25% greather installed power

THE CASE STUDY - Methodological approach

Economic-financial analysis based on the method proposed by Kuckshinrichs et al. (2017)

FINANCIAL PARAMETERS & METRICS USED

- □ Weighted average cost of capital (*WACC*)
- Levelized cost of hydrogen (*LCH*)
- \Box Net present value (*NPV*)
- □ Standard and modified internal rate of return (*IRR* and *MIRR*)

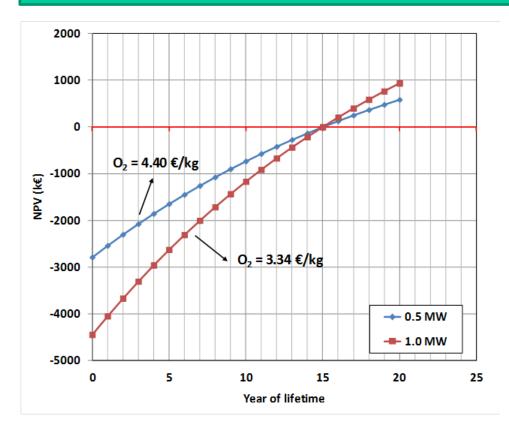
 not account for loan payments and interest on debt
non-cash deductions (i.e., depreciation and amortization) excluded
neither fuel costs nor electricity costs

Taxes are included like for an SME, although we consider an hospital.

THE CASE STUDY - Financial analysis

For details of plant costs (CAPEX and OPEX) and financial analysis, please refer to "A sizedependent financial evaluation of green hydrogen-oxygen coproduction", by G. Squadrito, A. Nicita, G. Maggio; Renewable Energy 163 (2021) 2165-2177

Here a resuming of data is reported.


Electrolyser specific cost $[\text{€/kW}] = 1,200 (P_{EL})^{-0.2}$

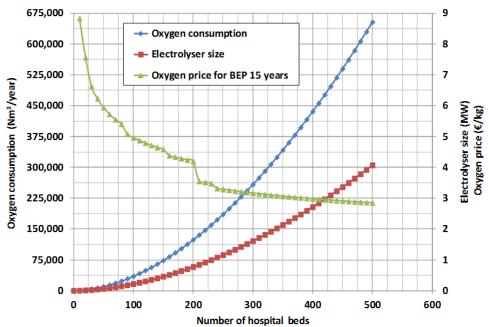
$$PV \ plant \ specific \ cost \ [€/kW] = \begin{cases} 1,800 & if \ P_{PV} < 20 \ kW \\ 1,500 & if \ 20 \ kW \le P_{PV} < 200 \ kW \\ 1,300 & if \ 200 \ kW \le P_{PV} < 1 \ MW \\ 700 & if \ P_{PV} \ge 1 \ MW \end{cases}$$

Parameter	Value
Equity rate of return	5.0%
Inflation rate	1.2%ª
Tax rate on earnings	30%
System degradation rate	0.5%/year

Parameter	Ref. Value	
Electrolyser nominal power, MW	1.0	
Electrolyser specific cost, €/kW	1,200	
Compression plant cost, k€	1,500	
Storage system cost, k€	237.6	
Labour cost for AWE plant, %/ddcc	5%	
PV plant peak power, MW	1.25	
PV plant specific cost, €/kW	700	
Specific power generated by PV plant in the site, kWh/y per kW PV	1,300	
Total power generation by PV plant, kWh/y	1,625,000	

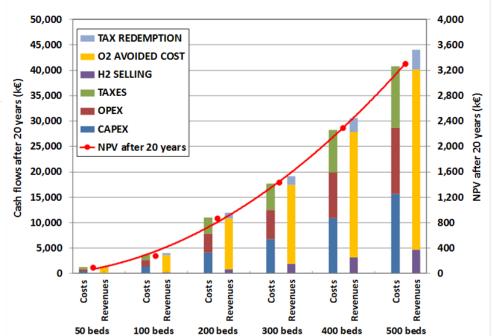
THE CASE STUDY - Results of the financial analysis

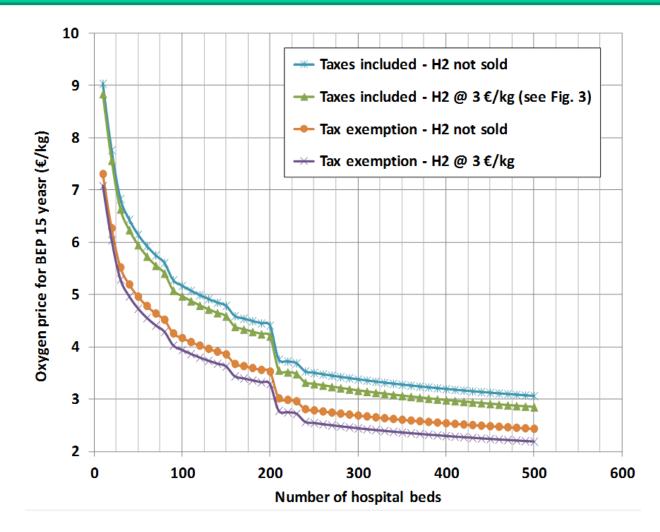
Assuming a hydrogen selling price of 3 €/kg,


- for a 1 MW electrolyser plant the results indicate that an oxygen (market) price of about 3.34 €/kg warrants a null NPV after 15 years;
- reducing the plant size to 500kW, the oxygen production cost for having the same result rises to 4.40€ /kg.

These costs are competitive with prices of medical oxygen reported by AIFA (the Italian drug agency)

Source AIEA moreh 2021	Ex-factory prices		Retail prices	
Source AIFA march 2021	€/Nm ³	€/kg	€/Nm ³	€/kg
Cryogenic gas	4.20	2.94	6.55	4.59
Compressed gas at 200 bar	6.20	4.34	9.67	6.77
Compressed gas at 300 bar	9.30	6.51	14.51	10.16

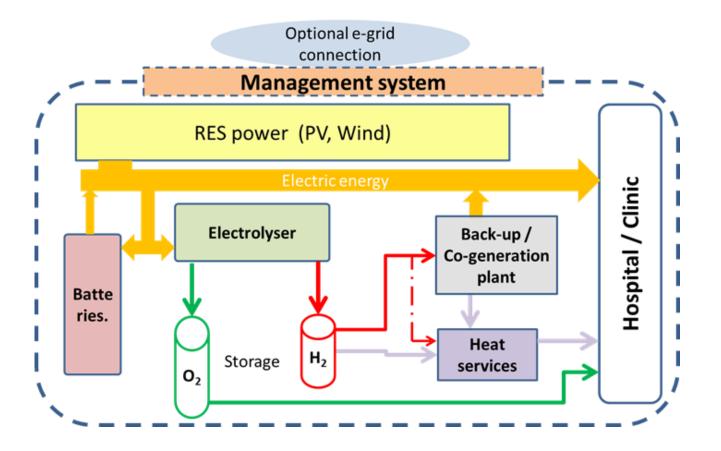

THE CASE STUDY - Results of the financial analysis


Oxygen consumption calculated according to Gómez-Chaparro M. et al. "Analytical determination of medical gases consumption and their impact on hospital sustainability" - Sustainability 2018; 10:2948.

> It is expected that results are still valid for the whole Mediterranean area.

RES-Based distributed Oxygen production in Hospitals is suitable for hospitals over 300 beds, and valuable for hospitals having 200-300 beds.

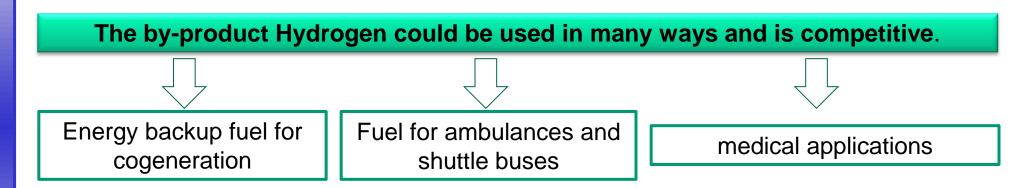
THE CASE STUDY – What is the taxes burden?



By the proposed approach the Green Hydrogen production cost target of 1,5€/kg is behind the corner!

Polygenaration system for hospitals and clinics.

Looking at the Energy-Health nexus


RES based polygeneration of different forms of energy and oxygen/hydrogen could be considered for resilient hospitals.

CONCLUSIONS

Distributed oxygen production in hospitals is a suitable and sustainable solution, at the least in Sicily (Mediterranean area).

If medical OXYGEN is the reference product, Hydrogen is produced at low cost.

A new concept of poly-generation from RES could be introduced: simultaneous production of different forms of energy and useful goods (in our case O_2/H_2).

The exposed results have been submitted for publication to a peer review journal.

Consiglio Nazionale CeThank you for your attention

Gaetano Squadrito CNR-ITAE

S. Lucia sopra Contesse 5 – Messina Phone: +39-090624274 Fax: +39-090624247 E-mail: gaetano.squadrito@itae.cnr.it Institute URL: http//:www.itae.cnr.it