Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 00000000000000000000000

Power Reliability and Grid Connection: Evidence from Rural Guatemala

Federico M. Accursi¹

¹Department of Economics, University of Navarra

International Association of Energy Economics Conference

June, 2021

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 000000000000000000000000000000000000

Table of Contents

- 2 Literature review
- 3 Data & Model
- Empirical Results
- Potential Issues and Heterogenous effects

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
• 00 0		0 000000000		0 0000000000000000000000

Outline

- 2 Literature review
- 3 Data & Model
- Empirical Results
- **5** Potential Issues and Heterogenous effects

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
0		00000000	00	000000000000000000000000000000000000000

Motivation: Policy Implications

- In 2019, US\$290 Billion dollars spent on the electricity network, almost 190 in distribution (IEA, 2020)
 - Three times Guatemala GDP.
- SDG-7: Affordable, reliable and sustainable access to electricity.
 - Today, 800 million people lack of electricity.
- Urban-Rural Gap
 - In 2018, the worldwide electrification access is 97% for urban population and 15p.p. less to rural (World Bank Data).

Electrification access \neq Electrification rate (grid connect)

• In 2018, Rural Guatemala: 93.6% versus 77.7%

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
0		000000000	00	000000000000000000000000000000000000000

Motivation: Policy Implications

- In 2019, US\$290 Billion dollars spent on the electricity network, almost 190 in distribution (IEA, 2020)
 - Three times Guatemala GDP.
- SDG-7: Affordable, reliable and sustainable access to electricity.
 - Today, 800 million people lack of electricity.
- Urban-Rural Gap
 - In 2018, the worldwide electrification access is 97% for urban population and 15p.p. less to rural (World Bank Data).

Electrification access \neq Electrification rate (grid connect)

• In 2018, Rural Guatemala: 93.6% versus 77.7%

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 000000000000000000000000000000000000

Motivation

Empirical question

How does power reliability affect rural households willingness to grid connect?

- ⇒ Power quality as a barrier to electrification
- ⇒ Potential heterogeneous effects over municipalities according to past performance.

Methodological approach

Two regression models based on two household database and official quality records at municipality level.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 000000000000000000000000000000000000

Motivation

Empirical question

How does power reliability affect rural households willingness to grid connect?

- ⇒ Power quality as a barrier to electrification
- \Rightarrow Potential heterogeneous effects over municipalities according to past performance.

Methodological approach

Two regression models based on two household database and official quality records at municipality level.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 000000000000000000000000000000000000

Motivation

Empirical question

How does power reliability affect rural households willingness to grid connect?

- ⇒ Power quality as a barrier to electrification
- ⇒ Potential heterogeneous effects over municipalities according to past performance.

Methodological approach

Two regression models based on two household database and official quality records at municipality level.

Motivation ○ ○○ ●	Literature review	Data & Model O OOOOOOOOOO	Empirical Results O OO	Potential Issues and Heterogenous effects O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	
Motivation					

Why Guatemala is a good country to focus on?

- Finished a civil war in 1996 and experienced a **boost in rural grid expansion** \Rightarrow Electrification access grew from 55% in 2000 to 93% in 2018.
- In 2016, Residential sector energy consumption is based on firewood (90%), and only 5% on electricity (MEM,2019)
- Local urban-rural gap
 - Income and education
 - Poverty
 - electricity reliability: rural area suffered last decade more outages in duration (35%) and frequency (14%).

Motivation ○ ○○	Literature review	Data & Model 0 000000000	Empirical Results 0 00	Potential Issues and Heterogenous effects O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Motivati	ion			

Why Guatemala is a good country to focus on?

- Finished a civil war in 1996 and experienced a **boost in rural grid expansion** \Rightarrow Electrification access grew from 55% in 2000 to 93% in 2018.
- In 2016, Residential sector energy consumption is based on firewood (90%), and only 5% on electricity (MEM,2019)
- Local urban-rural gap
 - Income and education
 - Poverty
 - electricity reliability: rural area suffered last decade more outages in duration (35%) and frequency (14%).

Motivation ○ ○○	Literature review	Data & Model 0 000000000	Empirical Results 0 00	Potential Issues and Heterogenous effects O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Motivati	on			

Why Guatemala is a good country to focus on?

- Finished a civil war in 1996 and experienced a **boost in rural grid expansion** \Rightarrow Electrification access grew from 55% in 2000 to 93% in 2018.
- In 2016, Residential sector energy consumption is based on firewood (90%), and only 5% on electricity (MEM,2019)
- Local urban-rural gap
 - Income and education
 - Poverty
 - electricity reliability: rural area suffered last decade more outages in duration (35%) and frequency (14%).

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
	0000	0 000000000		0 000000000000000000000000

Outline

- 2 Literature review
- 3 Data & Model
- Empirical Results
- **5** Potential Issues and Heterogenous effects

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
	0000	0 000000000		0 0000000000000000000000000000000000000

- Power reliability at industrial sector:
 - Productivity (Alcott et al, 2016; Grainger and Zhang, 2019)
 - Firm Sales (Cole et al., 2018)
 - Average unit costs (Fisher-Vanden et al., 2015)
 - Investment on back up generation (Oseni and Pollit, 2015)
- At **household level**, majority is focus on **electrification benefits**, taking for granted quality. See Bayer et al., 2020 for a systematic review, and Grogan (2018, JED) for the Guatemalan case.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
	0000	0 000000000		0 0000000000000000000000000

- Power reliability at industrial sector:
 - Productivity (Alcott et al, 2016; Grainger and Zhang, 2019)
 - Firm Sales (Cole et al., 2018)
 - Average unit costs (Fisher-Vanden et al., 2015)
 - Investment on back up generation (Oseni and Pollit, 2015)
- At **household level**, majority is focus on **electrification benefits**, taking for granted quality. See Bayer et al., 2020 for a systematic review, and Grogan (2018, JED) for the Guatemalan case.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
	00000	0 000000000		0 0000000000000000000000000

- Interest on reliability in itself:
 - Chakravorty et al. (2014) studies the effect of both grid connection and quality on rural income in India. High quality service is at least as equally significant and positive on household incomes as electrification.
 - Dang and La (2019) stresses the positive effect of power quality on rural income in Vietnam.
 - Bajo-Buenestado (2021): blackouts in Kenya discourage electricity connections
- Literature based on WTP:
 - Kennedy et al. (2019): They state that rural households are willing to pay more for better service. More households will connect, if quality is improved.
 - Hashemi (2021): heterogeneity valuation of reliable supply across and within customer categories in India specially for industrial customers.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
	00000	0 000000000		0 0000000000000000000000000000000000000

How electricity quality supply is measured?

- Mostly come from Surveys.
 - Likert Scale
 - Frequency of outages
 - Duration
 - Reliability Index
- Empirical issues: measurement error, self selection, time frame.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
000	00000	0 000000000		o ooooooooooooooooo

Main contributions

Contribution #1

Study the effects of quality as a barrier to electrification in rural setting.

Contribution #2

Use of an official and objective reliability measure at municipality level.

Contribution #3

Empirical evidence in Latin America in an upper middle income country (World Bank)

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		000000000		0 0000000000000000000000

Outline

- 2 Literature review
- 3 Data & Model
- Empirical Results
- **5** Potential Issues and Heterogenous effects

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		o ●oooooooo		0 000000000000000000000000000000000000

Guatemala

Figure: Regions

Figure: Firms Zonal distribution

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		o ⊙●○○○○○○○○		0 00000000000000000000000

Quality Measure

Definition 1

$SAIDI_m = (\Sigma_{cm}\Sigma_j(Duration_{cmj}))/\Sigma_{cm}$

(1)

- Being Σ_{cm} =the total number of customers in municipality *m*; and *j* the interruption.
- It is measured by CNEE twice a year and reported at municipality level.
- Unit of measure: hours/semester

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 00●000000		0 000000000000000000000000000000000000

Data: Rural Quality

Motivation Literature review Dat 0 00000 0 00 00 00	ta & Model Emp 0 00●00000 00	pirical Results Po	otential Issues and Heterogenous effects

Why this sudden shift in SAIDI?

Evidence of managerial problems. \checkmark

- DEOCSA and DEORSA sale from Union Fenosa to Actis Group in May 2011 and its later resold in 2016 to ENERGUATE.
- Proximity of Tariff Agreement expiration with CNEE in 2014.
- Anecdotal evidence in local press blaming for lack of investment.
- × Generation constraints? There is no load shedding in Guatemala. Outages are

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		o 000000000		0 000000000000000000000000000000000000

Why this sudden shift in SAIDI?

- Evidence of managerial problems.
 - DEOCSA and DEORSA sale from Union Fenosa to Actis Group in May 2011 and its later resold in 2016 to ENERGUATE.
 - Proximity of Tariff Agreement expiration with CNEE in 2014.
 - Anecdotal evidence in local press blaming for lack of investment.
- × Generation constraints? There is no load shedding in Guatemala. Outages are more prone to be caused by distribution constraints.
- Reverse causality? \Rightarrow Unexpected consumer's growth rate \Rightarrow Bad quality \bigcirc Go X
- High prices \Rightarrow Unpaid bills, thief \Rightarrow Bad quality. ×

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 00000000000000000000000000

Tariff Scheme

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		_ 00000●000		0 000000000000000000000000000000000000

Tariff Scheme

Social Tariff: those who consume less than 300kw/h per month or 10kw/h per day. ⇒ 94% of Guatemalan customers

 \hookrightarrow INDE contribution: additional subsidy scheme for poorest households. It is tiered up subsidy that guarantees a maximum price. For the first 100kw/h consumed:

- 1-60 kw/h: Q0.50
- 61-88 kw/h:Q0.81
- Then, the Social Tariff is paid.

In December 2018, 70% of DEOCSA and DEORSA customers received the INDE contribution. Since 70% of all DEOCSA customers live in rural zones, and 63% in DEORSA, we can infer that subsidy benefits almost all rural households

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		_ 00000●000		0 000000000000000000000000000000000000

Tariff Scheme

Social Tariff: those who consume less than 300kw/h per month or 10kw/h per day. ⇒ 94% of Guatemalan customers

 \hookrightarrow INDE contribution: additional subsidy scheme for poorest households. It is tiered up subsidy that guarantees a maximum price. For the first 100kw/h consumed:

- 1-60 kw/h: Q0.50
- 61-88 kw/h:Q0.81
- Then, the Social Tariff is paid.

In December 2018, 70% of DEOCSA and DEORSA customers received the INDE contribution. Since 70% of all DEOCSA customers live in rural zones, and 63% in DEORSA, we can infer that subsidy benefits almost all rural households

Motivation	Literature review	Data & Model ○ ○○○○○○●○○	Empirical Results O OO	Potential Issues and Heterogenous effects O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Firme				

Table: Utilities main characteristics (2014)

	EEGSA	DEOCSA	DEORSA
Total Consumers	1,108,352	975,717	598,550
Social Tariff Consumers	997,668	952,152	576,215
Per capita consumption (kw/month)	104.66	68.61	79.06
Social Tariff (Quetzal/kwh)	1.63	2.02	1.92
Large Consumers	769	9	49
Compensation (Quetzales)	Q767,967	Q46,211,187	Q54,525,905
Services cut off (%)	6%	17%	22%
KvA installed per user	2.58	0.99	1.44

Notes: Services cut off is a proportion of total consumers. Compensation data is from 2013. Source: CNEE.

Motivation O OO O	Literature review	Data & Model ○ ○○○○○○○●○	Empirical Results 0 00	Potential Issues and Heterogenous effects O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Model

Using ENCOVI database

$$Y_{hdrt} = \alpha_0 + \alpha_1 * LnSAIDI_{drt} + H_{hdrt} + D_{drt} + \eta_r + \theta_t + \epsilon_{hdrt}$$

(2)

Y: dummy variable equals 1 if the household is connected to the grid; 0 otherwise.

 α_1 : captures the effect of 1% change in SAIDI at department level, in the probability to get connected.

Using Population Census 2018 database

$$Y_{hmd} = \beta_0 + \beta_1 LnSAIDI_{md} + H_{hmd} + M_{md} + \eta_d + \epsilon_{hmd}$$

(3)

 β_1 : captures the effect of 1% change in SAIDI at municipality level, in the probability to get connected.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
0 00		0 00000000	0 00	0 000000000000000000000000

Descriptive statistics

Table: Rural Area Descriptive statistics

	ENCOVI				CENSUS	
	2011		20	14	2018	
Variable	DEOCSA	DEORSA	DEOCSA	DEORSA	DEOCSA	DEORSA
Rural Household (%)	57.5%	66.0%	54.6%	64.2%	60.4%	61.6%
SAIDI (hours/semester)	10.3	10.3	41.4	45.3	10.3	13.8
Grid Connection (%)	71.9%	52.3%	79.7%	54.8%	84.7%	65.6%
Dwelling characteristics						
Owns the house	85.7%	85.9%	87.0 %	87.6%	88.2%	86.6%
Poor materials	50.1%	57.9%	47.4%	56.9 %	40.3 %	51.0%
Head of Household Variables						
Primary completed	57.1%	58.7%	61.3%	58.3%	63.4 %	62.9%
Farmer (% from workers)	66.8%	71.0%	67.7%	70.8%	60.5%	66.6%
Recent Migrant	1.9%	2.3%	0.8%	0.2%	1.3%	2.1%
Indigenous	61.0%	37.7%	58.3%	38.2%	60.7%	46.1 %
Average monthly TFI	Q 1,433.3	Q 1,368.9	Q 1,682.5	Q 1,844.0	nd	nd
Observations	3,319	3,958	2,695	2,970	671,572	516,747

Notes: 2011 and 2014 data is from ENCOVI, and 2018 from Census. All summary data is from the area supplied by DEOCSA and DEORSA. SAIDI data come from CNEE and is a weighted average by each municipality population. TFI means Total familiar income. From Census data, rural households who have panel solar are not taken into account for dwelling and HH characteristics

Power Reliability and Grid Connection:

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000	00	0 0000000000000000000000

Outline

- 2 Literature review
- 3 Data & Model
- Empirical Results
- **5** Potential Issues and Heterogenous effects

otivation	Literature review

Data & Model

Empirical Results

Empirical Results

	(1)	(2)	(3)	(4)
	Grid	Grid	Grid	Grid
Ln SAIDI	-0.111**	-0.108**	-0.141**	-0.230**
	(0.041)	(0.039)	(0.061)	(0.084)
Owns the house	0.038**	0.035**	0.042**	0.043**
	(0.019)	(0.017)	(0.017)	(0.017)
Poor Housing materials	-0.269***	-0.199***	-0.196***	-0.197***
1000	(0.016)	(0.014)	(0.014)	(0.014)
CDD		-0.002	0.000	0.006
		(0.003)	(0.005)	(0.005)
Real Income		0.009***	0.010***	0.010***
		(0.003)	(0.003)	(0.003)
Year FE	Yes	Yes	Yes	Yes
HH controls	No	Yes	Yes	Yes
Department controls	No	No	Yes	Yes
Region FE	No	No	Yes	Yes
Region*Year	No	No	No	Yes
Adjusted R ²	0.226	0.306	0.323	0.324
Observations	12,914	12,825	12,825	12,825

Table 3: ENCOVI results 2011-2014

Robust cluster errors at Primary Sample Unit (PSU) level, N=1,138, Department controls are mean characteristics at that level such as: dwelling, water and toilet access; literacy, schooling and employment rate, and proportion of indigenous living in the department, and proportion oh households that have at least one child working. Results remains in model 4 if clustering is at department level, and Wild bootstrap is performed with 400 replications.

* p<0.10, ** p<0.05, *** p<0.001

Motivation	Literature review	Data & Model	Empirical Results	Po
	00000			
00		00000000	00	

Empirical Results

	(1)	(2)	(3)	(4)
	grid	grid	grid	grid
Ln SAIDI	-0.067***	-0.025**	-0.029***	-0.021*
	(0.023)	(0.012)	(0.011)	(0.011)
CDD		-0.003	-0.003	-0.003
		(0.003)	(0.003)	(0.003)
Public Lightning Tariff		-0.000	-0.001	-0.001
		(0.001)	(0.001)	(0.001)
Poor housing materials		-0.166***	-0.145***	-0.147***
		(0.008)	(0.007)	(0.007)
Owns the house		0.017***	0.026***	0.025***
		(0.005)	(0.005)	(0.004)
Usually receives remittances		0.027***	0.023***	0.022***
		(0.003)	(0.003)	(0.003)
Asset: motorbike		0.061***	0.050***	0.050***
		(0.005)	(0.004)	(0.004)
Household variables	No	Yes	Yes	Yes
Municipality controls	No	No	Yes	Yes
Department Fixed effects	No	No	No	Yes
Adjusted R ²	0.008	0.242	0.255	0.271
Observations	1,178,160	1,161,698	1,161,698	1,161,698

Table 4: 2018 Census estimation

Robust clustered standard errors at municipality level(266)

* p<0.10, ** p<0.05, *** p<0.01

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		000000000000000000000000000000000000000

Outline

- 2 Literature review
- 3 Data & Model
- Empirical Results
- 5 Potential Issues and Heterogenous effects

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 ●00000000000000000000000000000000000

Quality shift in 2012 not full exogenous \Rightarrow IV strategy

- Possible measurement error calculating SAIDI at department level in ENCOVI regression.
- Include households with solar panels, CDD variable and placebo tests.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		© ●000000000000000000000000000000000000

Quality shift in 2012 not full exogenous ⇒ IV strategy

- Possible measurement error calculating SAIDI at department level in ENCOVI regression. composition
- Include households with solar panels, CDD variable and placebo tests.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		© ●000000000000000000000000000000000000

- Quality shift in 2012 not full exogenous ⇒ IV strategy
- Possible measurement error calculating SAIDI at department level in ENCOVI regression.

Include households with solar panels, CDD variable and placebo tests.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		0 ●00000000000000000000000000000000000

- Quality shift in 2012 not full exogenous ⇒ IV strategy
- Possible measurement error calculating SAIDI at department level in ENCOVI regression. Go To
- Include households with solar panels, CDD variable and placebo tests.

Motivation O OO O	Literature review	Data & Model 0 000000000	Empirical Results 0 00	Potential Issues and Heterogenous effects ○ ○●○○○○○○○○○○○○○○○○○○○○

- Rainfall as the instrumental variable.
- Two potential sources: INSIVUMEH (local Weather Stations) and NASA satellite images.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		_ 00●0000000000000000000000000000000000

IV strategy

Figure: SAIDI in 2014

Figure: Weather Stations

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		○ ○○○●○○○○○○○○○○○○○○○

IV strategy

Figure: Grid connection in 2014

Figure: SAIDI in 2014

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

IV Strategy

	(1)	(2)	(3)	(4)
	M3 Rainws	M4 Rainws	M3 Rain _{NASA}	M4 Rain _{NASA}
LnSAIDI	-0.388**	-0.396***	-0.854*	-0.771***
	(0.138)	(0.075)	(0.450)	(0.170)
	[0.038]	[0.005]	[0.118]	[0.008]
Household controls	Yes	Yes	Yes	Yes
Department controls	Yes	Yes	Yes	Yes
Year Dummies	Yes	Yes	Yes	Yes
Region Dummies	Yes	Yes	Yes	Yes
Region*Year	No	Yes	No	Yes
Adjusted R ²	0.320	0.324	0.295	0.316
Clusters	19	19	19	19
First stage F-statistic	9.988	23.197	2.750	9.146
Observations	12,825	12,825	12,825	12,825

Table 5: IV Regression models-ENCOVI

Robust Standard errors clustered at department level in parenthesis. Wild Bootstrapped Robust Standard errors clustered at department level (400 replications). Between square brackets it is the p-value. F-statistic is for the heteroskedasticity and cluster robust Kleibergen-Paap weak instrument test. M3 and M4 means models 3 and 4 of Table [3]

* p<0.10, ** p<0.05, *** p<0.001

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
0		0		0

					_
	(1)	(2)	(3)	(4)	
	Grid	Grid	Grid	Grid	
Ln SAIDIw	-0.126***	-0.149***	-0.086	-0.135*	
	(0.037)	(0.038)	(0.054)	(0.074)	
Year FE	Yes	Yes	Yes	Yes	
Household controls	No	Yes	Yes	Yes	
Department controls	No	No	Yes	Yes	
Region FE	No	No	Yes	Yes	
Region*Year	No	No	No	Yes	
Adjusted R^2	0.227	0.308	0.323	0.324	
Observations	12,914	12,825	12,825	12,825	

Table 6: Robustness check: weighted measure

Robust Standard errors clustered at PMU level. These are the same models as Table 4. Results remains in model 4 if clustering is at department level, and Wild bootstrap is performed with 400 replications

* p<0.10, ** p<0.05, *** p<0.001

Potential Issues

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		o 000000000000000000000000000000000000

	(1) grid	(2) grid	(3) grid	(4) water	(5) garbage
Ln SAIDI	-0.022**	-0.028**	-0.027**	-0.006	-0.007
	(0.011)	(0.013)	(0.013)	(0.020)	(0.011)
Household controls	Yes	Yes	Yes	Yes	Yes
Municipality controls	Yes	Yes	Yes	Yes	Yes
Department Fixed effects	Yes	Yes	Yes	Yes	Yes
adj. R ²	0.270	0.302	0.303	0.182	0.197
Observations	1,161,698	1,243,221	1,243,221	1,161,698	1,161,698

Table 7: Robustness Check Census.

Robust clustered standard errors at municipality level. Model (1) does not include CDD as a control; Model (2) does not includes CDD but includes households with solar panel. Model (3) includes both. Model (4) and (5) are placebo tests. In these models, CDD, DEOCSA dummy variable, and the mean access to water and garbage in each municipality are not included as control variables

* p<0.10, ** p<0.05, *** p<0.01

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		_ 0000000●00000000000

Heterogeneous effects

Intensity

$$Y_{hmd} = \beta_0 + \beta_1 \mathbb{1}(SAIDI_{md} > x) + H_{hmd} + M_{md} + \eta_d + \epsilon_{hmd}$$

• Does past performance matter (2015-2018)?

$$Bad \quad reputation = \begin{cases} 1 & \text{if frequency} \geq 3 \\ 0 & \text{if } frequency < 3 \end{cases}$$

Go to

otivation	Literatu
	0000

rature review

Data & Model

Empirical Results

Potential Issues and Heterogenous effects

Heterogeneous Effects: Intensity

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
	00000			
00		00000000	00	000000000000000000000000000000000000000

Heterogeneous Effects: Past Performance

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
000		0 000000000		0 00000000000000000000000

Heterogeneous Effects: Past Performance

Motivation	Literature review
	00000

Data & Model

Empirical Results

Heterogeneous Effects: Past Performance

	(1)	(2)	(3)
	SAIDI<14hs	SAIDI>14hs	SAIDI>14hs
Ln SAIDI	-0.031***	-0.050	-0.186***
	(0.009)	(0.058)	(0.061)
Ln SAIDI* Bad Reputation			0.233**
			(0.115)
Bad Reputation=1			-0.663*
			(0.335)
Household controls	Yes	Yes	Yes
Municipality controls	Yes	Yes	Yes
Department Fixed effects	Yes	Yes	Yes
Clusters	184	82	82
Adjusted R ²	0.267	0.298	0.300
Observations	767,308	394,390	394,390

Table 8: OLS Census full model specification with different subsamples

Robust clustered standard errors at municipality level. Model 1 includes the municipalities that had SAIDI levels under 14 hours. Models 2 and 3, upper 14 hours. All models have the same controls as model 4 in Table[4]

* p<0.10, ** p<0.05, *** p<0.01

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		o 000000000000000000000000000000000000

Conclusions

- Results are given a plausible evidence that *quality matters*:
 - In 2011-2014 period we find that a 1% reduction in outages duration at department level (30 minutes per year), increases probability of grid connection between 23-39 percentage points. This means between 69,000 and 116,000 new connections and 1.6-2.8 US\$ Million dollars in annual revenues.
 - In the second regression setup, with a more stable quality level in 2018, a 1% reduction in outages duration (15 minutes per year on average at municipality level) increases probability in 2 percentage points. This means on average an expected increase of 16.3 thousand new customers.
- Results also suggests an **heterogeneous effect** of SAIDI over municipalities. Conditional you are a defaulter, current quality matters unless the municipality has bad reputation.
- **Policy implications**: Efforts to expand the grid line to rural areas should be analyzed in concordance with actual power grid quality levels; better quality will generate more connections, and —as Grogan (2018) studied in Guatemala—, more electrification access will reduce the gender gap.

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		_ 000000000000000000000000000000000000

Thank you for your attention

Comments and suggestions: faccursi@alumni.unav.es

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
				0
00		000000000		000000000000000000000000000000000000000

Figure: Capacity

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
0		0	0	0
00		000000000	00	000000000000000000000000000000000000000

Figure: Growth rate of consumers and quality

Avg Annual Growth rate (2007-2011): EEGSA (3.9%); DEOCSA (2.6%); DEORSA (2.7%) Return

Power Reliability and Grid Connection:

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		o 000000000000000000000000000000000000

Rural Quality Map 2013

Figure: Power plants location

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		_ 000000000000000000000000000000000000

Motivation	Literature review	Data & Model	Empirical Results	Potential Issues and Heterogenous effects
		0 000000000		○ ○○○○○○○○○○○○○○○○○○

	(1)	(2)	(3)	(4)
	Frequency=0	Frequency=1	Frequency=2	Frequency>3
Ln SAIDI	-0.010*	-0.036**	0.025	-0.081*
	(0.006)	(0.015)	(0.018)	(0.046)
Household variables	Yes	Yes	Yes	Yes
Municipality controls	Yes	Yes	Yes	Yes
Department Fixed effects	Yes	Yes	Yes	Yes
Clusters	56	78	68	64
Adjusted R ²	0.245	0.305	0.260	0.287
Observations	230,265	305,907	294,171	331,355
SAIDI18 mean	8.52	10.32	12.54	16.48
SAIDI18 min	0.37	0.99	3.89	5.79
SAIDI18 max	13.91	37.35	39.44	36.84
Grid connected (%)	84.5	72.0	75.6	74.6
Solar Panels (%)	3.4	7.6	6.8	7.4

Table 9: OLS Census full model specification and frequency of law compliance

Robust clustered standard errors at municipality level in parenthesis. All models have the same controls as model 4 in Table [1]. The information in the last five lines are summary statistics for each frequency group. Data of solar panels is just informative, and it does not mean it was included in the estimations.

* p<0.10, ** p<0.05, *** p<0.01