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Curbing coal

o Consider a global institution with a fixed budget to be split between:
1) pay countries to reduce coal extraction (supply reduction)
2) pay countries to reduce energy use (demand reduction)
3) pay countries to expand renewables (substitute expansion)

@ What is the optimal budget split under complete information?

@ Lemma: Suppose the demand and supply elasticities are all finite.
Then it is optimal to allocate a strictly positive amount to each of the
three approaches.
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The global institution’s problem

@ Global institution announces reward payment schemes:
fix(Xi)7 fiy()’i)7 fiz(zi) >0
e Countries choose their (x;,yi, z)

Definition

A market equilibrium under a given set of reward payment scheme
(fix, fiy, fiz)ics is a combination of an allocation (x;,yi, z;)ic; and a price p
such that:

1) market clearing: ¥ ;c;xi—yi+2z =0

2) individual rationality:

x; = argmaxy px — Ci(x) + fix(x)

yi = argmaxy — py + Bi(y) + iy (y)

zj = argmax,pz — Gi(z) + fi,(2)
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Viewing the global institution as choosing the allocation
and the price

market equilibrium
(surjective map)

(fais fyin Fai)ict———— (D, (24, Yi 2i )icr)

minimal required
transfers

(Fiz, Fy, Fiz)
Fi; = suppz — Ci(z) — (pz; — Ci(xi))
F,, = sup B;(y) — py — (Bi(w) — pai)
F,. = suppz — Gi(%) — (pz — Gi(21))
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The global institution’s problem

o Objective: Yie Bi(yi) — Ci(xi) — Gi(zi) — n(¥Ljes X))
@ Complete information
°
°

Exogenous budget F

F is insufficient to fully correct the inefficiency arising from the global
externality



The Price Preservation Lemma

At the optimal mechanism we have: The world market price p for coal
ends up being the same as in the absence of any mechanism.
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Global welfare as a function of budget split
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Global welfare as a function of budget split
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Country i's utility:

Ui=Yl, ﬁ(bit(y,'t) — git(zit) — (cit(xit) — cie(xie-1)) +
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@ The global institution’s objective:
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The global institution’s problem under full commitment
and without constraints on borrowing/saving

@ Announce path of reward payment schemes

(fixt (Xit), iyt (it): fizt (2it))iet eeqa,.., 7y and fully commit to it
@ Budget constraint:

Zthl Yiel ﬁ(fixt(xit) + fiye(yie) + fize(zit)) < Zthl ﬁFt



The Dynamic Price Preservation Lemma

At the optimal mechanism we have:
The entire price path (Pt)te{l,...,T} is identical to when there is no
mechanism.




The global institution’s spending path at the optimal
mechanism in a 3-period model
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Alternative implementation

e Demand/substitute side:
Carbon pricing reward funds sufficient

@ Supply side:
Extraction based carbon pricing reward funds can cover first period
Deposit purchase funds can cover last period



The global institution’s spending path at the optimal
mechanism in a 3-period model
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Conclusions

@ Valuable to create global institutions rewarding countries for
conserving fossil fuels

@ Deposit purchase funds alone insufficient to implement the optimal
mechanism on the supply side
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The Monotone Mitigation Lemma

Lemma

Suppose the global institution has an intertemporal budget of
F=X/, u—f%y

Denoting by xi:(F) the cumulative coal extraction of i by the end of
period t at the optimal mechanism, we have:

0>%u > | > &y,

In particular, increasing the budget F reduces coal extraction (and use),
Yixit(F) — xit—1(F), in all periods.




The Monotone Optimal Spending Corollary

Corollary

Suppose the global institution has an intertemporal budget of
T _F
F =Ygy
Denoting by F(F), Fe,(F), Fe-(F) the global institution’s optimal
spending on supply reduction, demand reduction and substitute expansion

in period t, we have:

dFp dFy, dFy,
GE >0, >0, >0vt




The global institution’s spending path at the optimal
mechanism in a 3-period model
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2 architectures

@ separated architecture:
-separate funds for rewarding supply reduction and demand reduction
-donors can earmark contributions

@ unified architecture:
-unified institution splitting its budget to maximize emissions
reductions
-donors cannot earmark contributions

@ Lemma: Under both architectures there is a unique Nash Equilibrium.

@ Lemma: Under the unified architecture, generically, exactly one
player contributes.

@ Lemma: Under the separated architecture both funds receive positive
funding.

@ Proposition: The emissions under the separated architecture are
always lower or equal to those under the unified architecture
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Results under linear demand and supply functions

Lemma

Suppose the coal importer and the coal exporter are of equal size:

Sim = Sex = S. Switching from the unified architecture to the separated

arch/tecture multiplies the emissions reductions by the following factor:
(ed+es) 1

14 o~ 1.32

€ €]
n 1—%a(eg+ez)

N = social cost of carbon of coal relative to its price = 1.27
o = global coal exports divided by global coal use = 0.2

eq = current price elasticity of demand for coal = 0.7

es = current price elasticity of supply of coal =1.3



Results under linear demand and supply functions

Lemma

Suppose the coal importer and the coal exporter are of equal size:
Sim = Sex = S. Switching from the unified architecture to the separated
arch/tecture multiplies the emissions reductions by the following factor:

14t - ~957
N 1_ﬁa(eg+ez )2
@ 1 = social cost of carbonof oil relative to its price = 0.24
o «a = global oil exports divided by global oil use = 0.425
@ ey = current price elasticity of demand for oil = 0.5
@ es = current price elasticity of supply of oil = 0.32



Constrained Efficiency Lemma

At the optimal mechanism we have:
The allocation (x,-t,y,-t,z,-t),-el,te{17,,.77} maximises global welfare amongst
all allocations having the same value for climate change damages,

Zielni(Zjelth "'vZJEIXJ'T)'




The optimal mechanism in a 3 period model

Su



A commitment problem

Corollary

Suppose the global institution announces at time 1 the optimal mechanism
assuming it fully commits to it.

Suppose that at time t > 1 the global institution announces, to all
countries’ surprise, a new mechanism that it actually sticks to from then
onwards.

Then the new mechanism involves less spending on rewarding supply
reduction than the originally announced mechanism.
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How severe is the commitment problem?

@ From now on suppose that:
- the global institution cannot commit at all
- the global institution cannot save or borrow

-T=3
e x:(F1,Fy, F3) :=aggregate cumulative coal extraction in period t

@ denote by y; coal demand in period t



Additional Funding will always decrease eventual emissions

Proposition

g%ikﬁfzfs) < OV(F1, F2, F3)Vt € {1,2,3}




The Weak Green Paradox

Proposition

%’(FbFz,ﬁ) > OV(F1, F2, F3)
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additional funding for the global institution?

1‘[(X1,X2,X3) = ﬁ(Xl = IL_H(XQ —X1) I ﬁz(Xy, —Xz))




Can climate change damages increase as a result of
additional funding for the global institution?

1‘[(X1,X2,X3) = ﬁ(Xl = IL_H(XQ —X1) I ﬁz(Xy, —Xz))

@ By preceding propositions, increasing F, will:
- increase xq
- decrease x» and x3



Necessary and Sufficient Conditions for the Strong Green
Paradox to not arise for Small Budgets

Proposition

_ i pe — _ 9 pe
Denote ey = e i Oyt = ) dpe vt and

a:=en

(332)((14+ 231+ 22 () AT 1 20 L 2

Then the following condition is sufficient for the Strong Green Paradox to
not occur for small budgets:

e3> a

Moreover, if e,3 < a then the following condition is necessary and

sufficient for the Strong Green Paradox to not occur for small budgets:

a—e,
y3
~—Z r

€x3 = €y1

X 1y x> | % &2y p1(Ltr)? | e py(ltr)
B (DT ) s w2 ;)




Necessary and Sufficient Conditions for the Strong Green
Paradox to not arise for Small Budgets

Proposition

Suppose that extraction costs do not change over time, so that we can
denote them simply by c(x).
Then the Strong Green Paradox occurs for small budgets in the three
period model iff h:= gi1g>+ g3+ ga(gs +86) <0
with the following definitions:
e, — i pe
bt < dpt yi
g1 :=rc"(x2) (ey3r(x3 —x2)c”(x3) + (1+r)c’(x3))
82 1= (ey1x1 +ey2(x2 —x1)) (1’ (x2) + ¢ (x3)) — ey2r(1+r)(x1 —x2)c'(x1)
g i=enr(1+
r)xic”(x1) (eyar(x3 —x2)c”(x3) + (r+1)c'(x3)) (ey2r(x2 — x1) <" (x2) + rc’(x2) + ¢’ (x3))
ga :=rc'(x2) +c'(x3)
g5 :=(1+r)c(x3) (r(1+r)c'(x1) + rc’ (x2) + €/ (x3))
g6 1= rc”(x3) (ya(0a —x2) (r(1+ r)e/(30) + re’(x2) + €/ (xa)) — ey (14 P)ac(3))




Empirical estimate of ¢(x)

Base Case Coal Supply Cost Curve = 2035, split by Development Status (2015 prices)
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Cubic approximation of the empirical estimate of c(x)
C(x)
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Suppose that the third period extraction is not more than the second
period extraction. Then the Strong Green Paradox can only occur for
small budgets if% > 15.55 or % > 15.55.




2 architectures

@ separated architecture:
-separate funds for rewarding supply reduction and demand reduction
-donors can earmark contributions



2 architectures

@ separated architecture:
-separate funds for rewarding supply reduction and demand reduction
-donors can earmark contributions

@ unified architecture:
-unified institution committing to the ex ante optimal way of
splitting its available funding flow
-donors cannot earmark contributions



Global welfare as a function of budget split
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