

Hochschule Niederrhein

University of Applied Sciences

SWK E²

Institut für Energietechnik und Energiemanagement

Institute of Energy Technology and Energy Management

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen |

1st IAEE Online Conference

POWER-TO-X MODELLING WITH IDENTIFICATION OF ECONOMIC KEY FACTORS USING A BUS FLEET SENSITIVITY ANALYSIS

SWK E² - Institute for Energy Technology and Energy Management Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Hochschule Niederrheit University of Applied Sciences SWK E²

- Introduction: Potentials of Hydrogen
- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Introduction: Potentials of Hydrogen

- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Introduction: Potentials of Hydrogen Forecast: Global Hydrogen Demand by Sector

*[1] Reference: IEA – International Energy Agency (2020)

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Hochschule Niederrhein University of Applied Sciences SWK E²

Introduction: Potentials of Hydrogen Forecast: Global Hydrogen Demand by Sector

^{*[1]} Reference: IEA – International Energy Agency (2020)

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Hochschule Niederrhein University of Applied Sciences SWK E²

Introduction: Potentials of Hydrogen Hydrogen in Heavy-Duty Transport

- Hydrogen as fuel in the transport sector is seen as a promising application case [2]
- The potential is particularly great in those applications that are difficult to electrify
- These applications include heavy-duty transport sector, which is characterised by little flexibility [3]

*[2] Reference: S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, P. Millet (2020) *[3] Reference: J.p. Stempien, S.H. Chan (2017)

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Hochschule Niederrhein University of Applied Sciences SWK E²

- Introduction: Potentials of Hydrogen
- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Hydrogen in Public Buses **Greenhouse Gas Emissions by Transport Mode**

*[4] Reference: IEA – International Energy Agency (2020)

- Introduction: Potentials of Hydrogen
- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Hochschule Niederrheir University of Applied Sciences SWK E²

Case Study Overal Objectives

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

ochschule Niederrheir SWK E²

Case Study Bus Fleet – Central Assumptions

FCBs

Number of deployed FCBs	10
CAPEX – FCB	650,000 €
OPEX – FCB (kilometre specific)	0.38 €/km
Kilometre specific hydrogen demand	0.10 kg/km
Funding rate on innovative share	40%
Annual driving distance	65,000 km/a
Depreciation period	11 a

Diesel-powered bus (are taken into account as avoided costs)

CAPEX Diesel-powered bus	240,000 €
OPEX – Diesel-powered bus (kilometre specific)	0.295 €/km
Kilometre specific diesel demand	0.35 L/km
Annual driving distance	65,000 km/a
Depreciation period	11 a
Costs Diesel	0.90 €/L

- Introduction: Potentials of Hydrogen
- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Modelling - Electricity Market and Hydrogen Storage Target Function

Formulation of objective function:

 $\min_{x} \ c^{T}x$

Decision vector *x* with length *X*

$$\begin{array}{ccc} day = 1 & day = 2 & day = 3 \\ \mathbf{x}^{\mathrm{T}} = (\mathbf{x}_{h=1} \ \mathbf{x}_{h=2} \ \cdots \ \mathbf{x}_{h=24} & \mathbf{x}_{h=25} \ \mathbf{x}_{h=26} \ \cdots \ \mathbf{x}_{h=48} & \mathbf{x}_{h=49} \ \mathbf{x}_{h=50} \ \cdots \ \mathbf{x}_{h=72}) \end{array}$$

Vector c (C=X) contains the hourly exchange electricity prices day = 1 day = 2 day = 3 $c^{T} = (c_{h=1} c_{h=2} \cdots c_{h=24} \quad c_{h=25} c_{h=26} \cdots c_{h=48} \quad c_{h=49} c_{h=50} \cdots c_{h=72}) \quad \dots$

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Hochschule Niederrheit University of Applied Sciences SWK E²

Modelling - Electricity Market and Hydrogen Storage Filling the Hydrogen Storage

In the following, the H_2 level is shown for an exemplary storage with a capacity of 50 full load hours over 30 days!

20

Hochschule Niederrhei University of Applied Sciences SWK E²

Modelling - Electricity Market and Hydrogen Storage Design of a Hydrogen Storage

- Use of the unit "electrolyser full load hours" as storage quantity
 - \rightarrow Transferability to all constellations (demand, storage, electrolyser)
- Model calculated for different requirements and storage sizes

- The economic optimisation potential due to the larger design of the hydrogen storage tank is very low!
- Therefore the storage is designed to be small in the tool (assumption: 780 kg)!

Modelling - Electricity Market and Hydrogen Storage Design of a Hydrogen Storage

- Introduction: Potentials of Hydrogen
- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Hochschule Niederrheir University of Applied Sciences SWK E²

Economic Efficiency Calculation - Results Levelized Cost of Energy - Hydrogen

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

26

Hochschule Niederrhein University of Applied Sciences SWK E²

Economic Efficiency Calculation - Results Sensitivity Analysis

Key	Factors	@ Value -50%	@ Value -25%	Base Case	@ Value +25%	@ Value +50%			
Dies	sel Price	0.45 €/I	0.68 €/I	0.90 €/I	1.13 €/I	1.35 €/I			
Hydrogen Dem	nand per Kilometre	0.05 kg/km	0.08 kg/km	0.10 kg/km	0.13 kg/km	0.15 kg/km			
Exchange I	Electricity Price	20.96 €/MWh	31.43 €/MWh	41.91 €/MWh	52.39 €/MWh	62.87 €/MWh			
Price for Carbon Dioxide Emissions		20 €/t	30 €/t	40 €/t	50 €/t	60 €/t			
-5000000€									
	@ Value -50%	@ Value -25%	Base-Cas	se @ Val	ue +25% @	Value +50%			
-5500000€ -									
-6000000€ —									
-6500000€ —									
-7000000€									
-7500000€									
-8000000€	Base Case (NPV): -6,714,511 €								
-8500000€									
-9000000€									
-9500000€									
-10000000€		ico		oon Domand par K	ilomotro				
	Diesei Price Hydrogen Demand per Kilometre								

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Jochschule Niederrhein iversity of Applied So SWK E²

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

29

Hochschule Niederrhein University of Applied Sciences SWK E²

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

SWK

30

Hochschule Niederrhein University of Applied Sciences SWK E²

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

Hochschule Niederrhein University of Applied Sciences SWK E²

- Introduction: Potentials of Hydrogen
- Hydrogen in Public Buses
- Case Study
- Modelling Electricity Market and Hydrogen Storage
- Economic Efficiency Calculation Results
- Conclusion

Conclusion Outlook and Discussion

- The studies show that there are two very important factors, electricity costs and funding programmes (funding rates), which have a significant influence on the result of the economic efficiency calculation!
- In particular, the results and outcomes from the National Hydrogen Strategy and the roadmaps of the individual federal states will significantly influence the dynamics of the expansion of electrolysis capacity!
- Great potential for achieving high efficiencies (up to 80%) is attributed to high-temperature electrolysis (SOEC electrolyser)!
- The combination of utilisation paths for the products hydrogen, oxygen and heat offers great potential for optimising the economic efficiency of water electrolysis, taking into account the site-specific parameters.

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen | Slide

35

Hochschule Niederrhein University of Applied Sciences SWK E²

Thank you for your attention!

Hochschule Niederrhein SWK E² Obergath 79 (Building J) 47805 Krefeld

Prof. Dr.-Ing. Jörg Meyer joerg.meyer@hs-niederrhein.de Tel: +49 (0)2151 822-6691

Prof. Dr.-Ing. Marc Gennat marc.gennat@hs-niederrhein.de Tel: +49 (0)2151 822-5112 Lukas Saars, M.Eng. lukas.saars@hs-niederrhein.de Tel: +49 (0)2151 822-6676

Marius Madsen, M.Eng. marius.madsen@hs-niederrhein.de Tel: +49 (0)2151 822-6697

| Power-to-X Modelling | Prof. Dr.-Ing. Marc Gennat | Prof. Dr.-Ing. Jörg Meyer | Lukas Saars | Marius Madsen |

